202 research outputs found

    Use of dynamical coupling for improved quantum state transfer

    Get PDF
    We propose a method to improve quantum state transfer in transmission lines. The idea is to localize the information on the last qubit of a transmission line, by dynamically varying the coupling constants between the first and the last pair of qubits. The fidelity of state transfer is higher then in a chain with fixed coupling constants. The effect is stable against small fluctuations in the system parameters.Comment: 5 pages, 7 figure

    Role of interference in quantum state transfer through spin chains

    Full text link
    We examine the role that interference plays in quantum state transfer through several types of finite spin chains, including chains with isotropic Heisenberg interaction between nearest neighbors, chains with reduced coupling constants to the spins at the end of the chain, and chains with anisotropic coupling constants. We evaluate quantitatively both the interference corresponding to the propagation of the entire chain, and the interference in the effective propagation of the first and last spins only, treating the rest of the chain as black box. We show that perfect quantum state transfer is possible without quantum interference, and provide evidence that the spin chains examined realize interference-free quantum state transfer to a good approximation.Comment: 10 figure

    Quantum state transfer in arrays of flux qubits

    Full text link
    In this work, we describe a possible experimental realization of Bose's idea to use spin chains for short distance quantum communication [S. Bose, {\it Phys. Rev. Lett.} {\bf 91} 207901]. Josephson arrays have been proposed and analyzed as transmission channels for systems of superconducting charge qubits. Here, we consider a chain of persistent current qubits, that is appropriate for state transfer with high fidelity in systems containing flux qubits. We calculate the fidelity of state transfer for this system. In general, the Hamiltonian of this system is not of XXZ-type, and we analyze the magnitude and the effect of the terms that don't conserve the z-component of the total spin.Comment: 10 pages, 8 figure

    Lost photon enhances superresolution

    Full text link
    Quantum imaging can beat classical resolution limits, imposed by diffraction of light. In particular, it is known that one can reduce the image blurring and increase the achievable resolution by illuminating an object by entangled light and measuring coincidences of photons. If an nn-photon entangled state is used and the nnth-order correlation function is measured, the point-spread function (PSF) effectively becomes n\sqrt n times narrower relatively to classical coherent imaging. Quite surprisingly, measuring nn-photon correlations is not the best choice if an nn-photon entangled state is available. We show that for measuring (n1)(n-1)-photon coincidences (thus, ignoring one of the available photons), PSF can be made even narrower. This observation paves a way for a strong conditional resolution enhancement by registering one of the photons outside the imaging area. We analyze the conditions necessary for the resolution increase and propose a practical scheme, suitable for observation and exploitation of the effect

    Algorithmic approach to linearization of scalar ordinary differential equation

    Get PDF
    Аналитическая теория дифференциальных уравнени

    Correlation between binding rate constants and individual information of E. coli Fis binding sites

    Get PDF
    Individual protein binding sites on DNA can be measured in bits of information. This information is related to the free energy of binding by the second law of thermodynamics, but binding kinetics appear to be inaccessible from sequence information since the relative contributions of the on- and off-rates to the binding constant, and hence the free energy, are unknown. However, the on-rate could be independent of the sequence since a protein is likely to bind once it is near a site. To test this, we used surface plasmon resonance and electromobility shift assays to determine the kinetics for binding of the Fis protein to a range of naturally occurring binding sites. We observed that the logarithm of the off-rate is indeed proportional to the individual information of the binding sites, as predicted. However, the on-rate is also related to the information, but to a lesser degree. We suggest that the on-rate is mostly determined by DNA bending, which in turn is determined by the sequence information. Finally, we observed a break in the binding curve around zero bits of information. The break is expected from information theory because it represents the coding demarcation between specific and nonspecific binding

    Discovery of Fur binding site clusters in Escherichia coli by information theory models

    Get PDF
    Fur is a DNA binding protein that represses bacterial iron uptake systems. Eleven footprinted Escherichia coli Fur binding sites were used to create an initial information theory model of Fur binding, which was then refined by adding 13 experimentally confirmed sites. When the refined model was scanned across all available footprinted sequences, sequence walkers, which are visual depictions of predicted binding sites, frequently appeared in clusters that fit the footprints (∼83% coverage). This indicated that the model can accurately predict Fur binding. Within the clusters, individual walkers were separated from their neighbors by exactly 3 or 6 bases, consistent with models in which Fur dimers bind on different faces of the DNA helix. When the E. coli genome was scanned, we found 363 unique clusters, which includes all known Fur-repressed genes that are involved in iron metabolism. In contrast, only a few of the known Fur-activated genes have predicted Fur binding sites at their promoters. These observations suggest that Fur is either a direct repressor or an indirect activator. The Pseudomonas aeruginosa and Bacillus subtilis Fur models are highly similar to the E. coli Fur model, suggesting that the Fur–DNA recognition mechanism may be conserved for even distantly related bacteria

    Entanglement Transfer via XXZ Heisenberg chain with DM Interaction

    Full text link
    The role of spin-orbit interaction, arises from the Dzyaloshinski-Moriya anisotropic antisymmetric interaction, on the entanglement transfer via an antiferromagnetic XXZ Heisenberg chain is investigated. From symmetrical point of view, the XXZ Hamiltonian with Dzyaloshinski-Moriya interaction can be replaced by a modified XXZ Hamiltonian which is defined by a new exchange coupling constant and rotated Pauli operators. The modified coupling constant and the angle of rotations are depend on the strength of Dzyaloshinski-Moriya interaction. In this paper we study the dynamical behavior of the entanglement propagation through a system which is consist of a pair of maximally entangled spins coupled to one end of the chain. The calculations are performed for the ground state and the thermal state of the chain, separately. In both cases the presence of this anisotropic interaction make our channel more efficient, such that the speed of transmission and the amount of the entanglement are improved as this interaction is switched on. We show that for large values of the strength of this interaction a large family of XXZ chains becomes efficient quantum channels, for whole values of an isotropy parameter in the region 2Δ2-2 \leq \Delta \leq 2.Comment: 21 pages, 9 figure
    corecore