3 research outputs found

    Stress signaling convergence and nutrient crosstalk determine zinc-mediated amelioration against cadmium toxicity in rice

    Get PDF
    Consumption of rice (Oryza sativa L.) is one of the major pathways for heavy metal bioaccumulation in humans over time. Understanding the molecular responses of rice to heavy metal contamination in agriculture is useful for eco-toxicological assessment of cadmium (Cd) and its interaction with zinc (Zn). In certain crops, the impacts of Cd stress or Zn nutrition on the biophysical chemistry and gene expression have been widely investigated, but their molecular interactions at transcriptomic level, particularly in rice roots, are still elusive. Here, hydroponic investigations were carried out with two rice genotypes (Yinni-801 and Heizhan-43), varying in Cd contents in plant tissues to determine their transcriptomic responses upon Cd15 (15 ”M) and Cd15+Zn50 (50 ”M) treatments. High throughput RNA-sequencing analysis confirmed that 496 and 2407 DEGs were significantly affected by Cd15 and Cd15+Zn50, respectively, among which 1016 DEGs were commonly induced in both genotypes. Multitude of DEGs fell under the category of protein kinases, such as calmodulin (CaM) and calcineurin B-like protein-interacting protein kinases (CBL), indicating a dynamic shift in hormonal signal transduction and Ca2+ involvement with the onset of treatments. Both genotypes expressed a mutual regulation of transcription factors (TFs) such as WRKY, MYB, NAM, AP2, bHLH and ZFP families under both treatments, whereas genes econding ABC transporters (ABCs), high affinity K+ transporters (HAKs) and Glutathione-S-transferases (GSTs), were highly up-regulated under Cd15+Zn50 in both genotypes. Zinc addition triggered more signaling cascades and detoxification related genes in regulation of immunity along with the suppression of Cd-induced DEGs and restriction of Cd uptake. Conclusively, the effective integration of breeding techniques with candidate genes identified in this study as well as economically and technologically viable methods, such as Zn nutrient management, could pave the way for selecting cultivars with promising agronomic qualities and reduced Cd for sustainable rice production

    Zinc alleviates cadmium toxicity by modulating photosynthesis, ROS homeostasis, and cation flux kinetics in rice

    No full text
    Understanding of cadmium (Cd) uptake mechanism and development of lower Cd crop genotypes are crucial for combating its phytotoxicity and meeting 70% increase in food demand by 2050. Bio-accumulation of Cd continuously challenges quality of life specifically in regions without adequate environmental planning. Here, we investigated the mechanisms operating in Cd tolerance of two rice genotypes (Heizhan-43 and Yinni-801). Damage to chlorophyll contents and PSII, histochemical staining and quantification of reactive oxygen species (ROS), cell viability and osmolyte accumulation were studied to decipher the interactions between Cd and zinc (Zn) by applying two Cd and two Zn levels (alone as well as combined). Cd2+ and Ca2+ fluxes were also measured by employing sole Cd100 (100 ÎŒmol L−1) and Zn50 (50 ÎŒmol L−1), and their combination with microelectrode ion flux estimation (MIFE) technique. Cd toxicity substantially reduced chlorophyll contents and maximal photochemical efficiency (Fv/Fm) compared to control plants. Zn supplementation reverted the Cd-induced toxicity by augmenting osmoprotectants and interfering with ROS homeostasis under combined treatments, particularly in Yinni-801 genotype. Fluorescence microscopy indicated a unique pattern of live and dead root cells, depicting more damage with Cd10, Cd15 and Cd15+Zn50. Our results confer that Cd2+ impairs the uptake of Ca2+ whereas, Zn not only competes with Cd2+ but also Ca2+, thereby modifying ion homeostasis in rice plants. This study suggests that exogenous application of Zn is beneficial for rice plants in ameliorating Cd toxicity in a genotype and dose dependent manner by minimizing ROS generation and suppressing collective oxidative damage. The observations confer that Yinni-801 performed better than Heizhan-43 genotype mainly under combined Zn treatments with low-Cd, presenting Zn fortification as a solution to increase rice production
    corecore