5,801 research outputs found
Nuclear modification factor in intermediate-energy heavy-ion collisions
The transverse momentum dependent nuclear modification factors (NMF), namely
, is investigated for protons produced in Au + Au at 1 GeV within
the framework of the isospin-dependent quantum molecular dynamics (IQMD) model.
It is found that the radial collective motion during the expansion stage
affects the NMF at low transverse momentum a lot. By fitting the transverse
mass spectra of protons with the distribution function from the Blast-Wave
model, the magnitude of radial flow can be extracted. After removing the
contribution from radial flow, the can be regarded as a thermal one
and is found to keep unitary at transverse momentum lower than 0.6 GeV/c and
enhance at higher transverse momentum, which can be attributed to Cronin
effect.Comment: 8 pages, 5 figures; aceepted by Physics Letters
Effect of Mechanical Strain on the Optical Properties of Nodal-Line Semimetal ZrSiS
Optical properties of nodal-line semimetal ZrSiS are studied using first-principles calculations. Frequency-independent optical conductivity is a fingerprint of the infrared optical response in ZrSiS. It is found that this characteristic feature is robust with respect to uniaxial compressive strain of up to 10 GPa, yet with the flat region being narrowed with increasing strain. Upon uniaxial tensile stress of 2 GPa, the Fermi surface undergoes a Lifshitz transition accompanied by a weakening of the interband screening, which reduces the spectral weight of infrared excitations. It is also shown that the high-energy region is characterized by low-loss plasma excitations at ≈20 eV with essentially anisotropic dispersion. Strongly anisotropic dielectric properties suggest the existence of a hyperbolic regime for plasmons in the deep ultraviolet range. Although the frequencies of high-energy plasmons are virtually unaffected by external uniaxial deformation, their dispersion can be effectively tuned by strain. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimNational Natural Science Foundation of China, NSFC: 117742692018FYA0305800S.Y. acknowledges financial support from the National Key R & D Program of China (Grant No. 2018FYA0305800) and National Science Foundation of China (Grant No. 11774269). A.N.R. acknowledges travel support from FLAG-ERA JTC2017 Project GRANSPORT. Numerical calculations presented in this paper were performed on a supercomputing system in the Supercomputing Center of Wuhan University
Breaking the Barriers of Therapy Resistance: Harnessing Ferroptosis for Effective Hepatocellular Carcinoma Therapy
Xianmei Lv,1,2,* Gaochen Lan,3,* Lujian Zhu,4,* Qiusheng Guo1 1Department of Radiotherapy, Jinhua People’s Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China; 2Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People’s Republic of China; 3Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, People’s Republic of China; 4Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, People’s Republic of China*These authors contributed equally to this workCorrespondence: Qiusheng Guo, Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, People’s Republic of China, Email [email protected]: Ferroptosis is a type of cell death that relies on iron and is distinguished by the occurrence of lipid peroxidation and the buildup of reactive oxygen species. Ferroptosis has been demonstrated to have a significant impact on the advancement and resistance to treatment of hepatocellular carcinoma (HCC), thereby highlighting its potential as a viable therapeutic target. Ferroptosis was observed in HCC tissues in contrast to normal liver tissue. The inhibition of ferroptosis has been found to increase the viability of HCC cells and decrease their susceptibility to various anticancer therapies, including chemotherapy, radiotherapy, and immune checkpoint blockade. The administration of drugs that directly modulate ferroptosis regulators or induce excessive production of lipid-reactive oxygen species has demonstrated the potential to enhance the responsiveness of drug-resistant HCC cells to treatment. However, the precise mechanism underlying this phenomenon remains ambiguous. This review presents a comprehensive overview of the crucial role played by ferroptosis in enhancing the efficacy of treatment for hepatocellular carcinoma (HCC). The main aim of this study is to examine the feasibility of utilizing ferroptosis as a therapeutic approach to improve the efficacy of HCC treatment and overcome drug resistance. Keywords: ferroptosis, hepatocellular carcinoma, chemotherapy, tyrosine kinase inhibitor, immunosuppressive therapy, radiotherap
Trivial topological phase of CaAgP and the topological nodal-line transition in CaAg(P1-xAsx)
By performing angle-resolved photoemission spectroscopy and first-principles
calculations, we address the topological phase of CaAgP and investigate the
topological phase transition in CaAg(P1-xAsx). We reveal that in CaAgP, the
bulk band gap and surface states with a large bandwidth are topologically
trivial, in agreement with hybrid density functional theory calculations. The
calculations also indicate that application of "negative" hydrostatic pressure
can transform trivial semiconducting CaAgP into an ideal topological nodal-line
semimetal phase. The topological transition can be realized by partial
isovalent P/As substitution at x = 0.38.Comment: 20 pages, 4 figure
Enhancement of superoxide evolution by nickel-doped for the removal of organic pollutants and cyanobacteria
Organic pollutants and cyanobacteria exist in water widely, which make significant impacts on human health so that appropriate methods are needed for their removal. In this work, Ni doped Bismuth oxychloride (BiOCl) photocatalysts were successfully synthesized by a simple hydrothermal method. The light absorption and charge carriers separation involved in superoxide (·O2^{-}) generation can be optimized with the introduction of Ni element. And photocatalytic degradation experiments showed that the 9% Ni-BiOCl enhanced photodegradation activity of organic matter (Rh B and BPA) as well as M. aeruginosa. The degradation efficiency of Ni-BiOCl on the removal of Rh B and BPA were approximately 34.99% and 57% higher than that of pristine BiOCl. Furthermore, the algae inactivation was systematically studied by three-dimensional fluorescence spectrum. Results showed that ·O2− acted an irreplaceable role among the experiment of photocatalytic algae removal, and the details were described as ·O2^{−} and h^{+} first destroyed the cell wall of M. aeruginosa, secondly inactivated the active fluorescent substances in the cell, and then catalyzed the oxidation of intracellular exudates such as chlorophyll and phycocyanin as inorganic substances. This study provides a multifunctional catalyst for controlling water pollution and environmental restoration
- …