24,040 research outputs found

    Numerical simulation of solid tumor blood perfusion and drug delivery during the “vascular normalization window” with antiangiogenic therapy

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Hindawi PublishingTo investigate the influence of vascular normalization on solid tumor blood perfusion and drug delivery, we used the generated blood vessel network for simulations. Considering the hemodynamic parameters changing after antiangiogenic therapies, the results show that the interstitial fluid pressure (IFP) in tumor tissue domain decreases while the pressure gradient increases during the normalization window. The decreased IFP results in more efficient delivery of conventional drugs to the targeted cancer cells. The outcome of therapies will improve if the antiangiogenic therapies and conventional therapies are carefully scheduled

    Dictionary Learning and Sparse Coding-based Denoising for High-Resolution Task Functional Connectivity MRI Analysis

    Full text link
    We propose a novel denoising framework for task functional Magnetic Resonance Imaging (tfMRI) data to delineate the high-resolution spatial pattern of the brain functional connectivity via dictionary learning and sparse coding (DLSC). In order to address the limitations of the unsupervised DLSC-based fMRI studies, we utilize the prior knowledge of task paradigm in the learning step to train a data-driven dictionary and to model the sparse representation. We apply the proposed DLSC-based method to Human Connectome Project (HCP) motor tfMRI dataset. Studies on the functional connectivity of cerebrocerebellar circuits in somatomotor networks show that the DLSC-based denoising framework can significantly improve the prominent connectivity patterns, in comparison to the temporal non-local means (tNLM)-based denoising method as well as the case without denoising, which is consistent and neuroscientifically meaningful within motor area. The promising results show that the proposed method can provide an important foundation for the high-resolution functional connectivity analysis, and provide a better approach for fMRI preprocessing.Comment: 8 pages, 3 figures, MLMI201

    Phonon arithmetic in a trapped ion system

    Get PDF
    Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically

    Ge quantum dot arrays grown by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface: nucleation, morphology and CMOS compatibility

    Get PDF
    Issues of morphology, nucleation and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (<600 deg C) and high (>600 deg. C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts---pyramids and wedges---are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.Comment: 30 pages, 11 figure

    Highly efficient and reliable high power InGaN/GaN LEDs with 3D patterned step-like ITO and wavy sidewalls

    Get PDF
    Nitride-based high power LEDs with finger-like SiO2 current blocking layer (CBL), three-dimensional (3D) patterned step-like ITO double layers and wavy sidewalls were fabricated. The finger-like SiO2 CBL beneath finger-like p-electrode was designed to prevent current crowding effect, thereby facilitating uniform current spreading over the entire chip. In addition, 3D patterned step-like ITO double layers, including alternating 230 nm thick patterned upper step ITO layer and 100 nm thick lower step ITO layer, were formed by combining photolithography and aqua regia etchant. We showed that the top light extraction efficiency of high power LEDs can be significantly enhanced by taking 3D patterned step-like ITO. The light output power of high power LEDs with 3D patterned step-like ITO double layers is 13.9% higher than that of LEDs with smooth ITO layer. High-power LEDs with wavy sidewalls was fabricated by an optimized mask design in conjunction with dry etching process based on Cl2/BCl3 to improve light extraction efficiency at the horizontal direction. We demonstrated that light output power of high power LEDs with wavy sidewalls can be improved by 11% as compared to LEDs with flat sidewalls

    Infrared stability of ABJ-like theories

    Full text link
    We consider marginal deformations of the superconformal ABJM/ABJ models which preserve N=2 supersymmetry. We determine perturbatively the spectrum of fixed points and study their infrared stability. We find a closed line of fixed points which is IR stable. The fixed point corresponding to the ABJM/ABJ models is stable under marginal deformations which respect the original SU(2)xSU(2) invariance, while deformations which break this group destabilize the theory which then flows to a less symmetric fixed point. We discuss the addition of flavor degrees of freedom. We prove that in general a flavor marginal superpotential does not destabilize the system in the IR. An exception is represented by a marginal coupling which mixes matter charged under different gauge sectors. Finally, we consider the case of relevant deformations which should drive the system to a strongly coupled IR fixed point recently investigated in arXiv:0909.2036 [hep-th].Comment: 1+11 pages, 4 figures; v2: minor correction

    Exact factorization of the time-dependent electron-nuclear wavefunction

    Get PDF
    We present an exact decomposition of the complete wavefunction for a system of nuclei and electrons evolving in a time-dependent external potential. We derive formally exact equations for the nuclear and electronic wavefunctions that lead to rigorous definitions of a time-dependent potential energy surface (TDPES) and a time-dependent geometric phase. For the H2+H_2^+ molecular ion exposed to a laser field, the TDPES proves to be a useful interpretive tool to identify different mechanisms of dissociation.Comment: 4 pages, 2 figure

    Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix

    Full text link
    We consider a symmetric matrix, the entries of which depend linearly on some parameters. The domains of the parameters are compact real intervals. We investigate the problem of checking whether for each (or some) setting of the parameters, the matrix is positive definite (or positive semidefinite). We state a characterization in the form of equivalent conditions, and also propose some computationally cheap sufficient\,/\,necessary conditions. Our results extend the classical results on positive (semi-)definiteness of interval matrices. They may be useful for checking convexity or non-convexity in global optimization methods based on branch and bound framework and using interval techniques

    Excitonic ferromagnetism in the hexaborides

    Full text link
    A ferromagnet with a small spontaneous moment but with a high Curie temperature can be obtained by doping an excitonic insulator made from a spin triplet exciton condensate. Such a condensate can occur in a semimetal with a small overlap or a semiconductor with a small bandgap. We propose that it is responsible for the unexpected ferromagnetism in the doped hexaboride material Ca_{1-x}La_xB_6.Comment: 4 pages, 3 figure
    • 

    corecore