13,684 research outputs found

    Electron-doped phosphorene: A potential monolayer superconductor

    Full text link
    We predict by first-principles calculations that the electron-doped phosphorene is a potential BCS-like superconductor. The stretching modes at the Brillouin-zone center are remarkably softened by the electron-doping, which results in the strong electron-phonon coupling. The superconductivity can be introduced by a doped electron density (n2Dn_{2D}) above 1.3Γ—10141.3 \times10^{14} cmβˆ’2^{-2}, and may exist over the liquid helium temperature when n2D>2.6Γ—1014n_{2D}>2.6 \times10^{14} cmβˆ’2^{-2}. The maximum critical temperature is predicted to be higher than 10 K. The superconductivity of phosphorene will significantly broaden the applications of this novel material

    Cooperative non-orthogonal multiple access in cognitive radio

    Get PDF
    This letter studies the application of non-orthogonal multiple access to a downlink cognitive radio (termed CR-NOMA) system. A new cooperative transmission scheme is proposed aimed at exploiting the inherent spatial diversity offered by the CR-NOMA system. The closed-form analytical results are developed to show that the cooperative transmission scheme gives better performance when more secondary users participate in relaying, which helps achieve the maximum diversity order at secondary user and a diversity order of two at primary user. The simulations are performed to validate the performance of the proposed scheme and the accuracy of the analytical results

    A comprehensive analysis of Fermi Gamma-Ray Burst Data: IV. Spectral lag and Its Relation to Ep Evolution

    Full text link
    The spectral evolution and spectral lag behavior of 92 bright pulses from 84 gamma-ray bursts (GRBs) observed by the Fermi GBM telescope are studied. These pulses can be classified into hard-to-soft pulses (H2S, 64/92), H2S-dominated-tracking pulses (21/92), and other tracking pulses (7/92). We focus on the relationship between spectral evolution and spectral lags of H2S and H2S-dominated-tracking pulses. %in hard-to-soft pulses (H2S, 64/92) and H2S-dominating-tracking (21/92) pulses. The main trend of spectral evolution (lag behavior) is estimated with log⁑Ep∝kElog⁑(t+t0)\log E_p\propto k_E\log(t+t_0) (Ο„^∝kΟ„^log⁑E{\hat{\tau}} \propto k_{\hat{\tau}}\log E), where EpE_p is the peak photon energy in the radiation spectrum, t+t0t+t_0 is the observer time relative to the beginning of pulse βˆ’t0-t_0, and Ο„^{\hat{\tau}} is the spectral lag of photons with energy EE with respect to the energy band 88-2525 keV. For H2S and H2S-dominated-tracking pulses, a weak correlation between kΟ„^/Wk_{{\hat{\tau}}}/W and kEk_E is found, where WW is the pulse width. We also study the spectral lag behavior with peak time tpEt_{\rm p_E} of pulses for 30 well-shaped pulses and estimate the main trend of the spectral lag behavior with log⁑tpE∝ktplog⁑E\log t_{\rm p_E}\propto k_{t_p}\log E. It is found that ktpk_{t_p} is correlated with kEk_E. We perform simulations under a phenomenological model of spectral evolution, and find that these correlations are reproduced. We then conclude that spectral lags are closely related to spectral evolution within the pulse. The most natural explanation of these observations is that the emission is from the electrons in the same fluid unit at an emission site moving away from the central engine, as expected in the models invoking magnetic dissipation in a moderately-high-Οƒ\sigma outflow.Comment: 58 pages, 11 figures, 3 tables. ApJ in pres
    • …
    corecore