8 research outputs found

    Time Reversal Method for Arch Bridge Cables Inspection using Longitudinal Guided Waves

    Get PDF
    Arch bridge cables consist of anchor heads, steel wires parallel arranged in an equilateral hexagon and hot-extruding PE sheathing layers outside the wires. The complex structure and contact force between wires aggravates the dispersion and attenuation of guided waves in steel wires. In order to reduce the attenuation of acoustical energy, below 80kHz low-frequency longitudinal guided waves is usually adopted. Low-frequency guided waves attenuate more slowly than high-frequency waves, but the received signal packets are wider and less recognizable. In this paper, the process of the time reversal method[1] is presented and the related parameters are calculated. Over a wide frequency range, using narrow-band pulse signals with different center-frequencies to drive comb-like magnetostrictive transducer array round the cable, extract the echo signals, which contains some feature information such as flaws, anchor heads, structural noise caused by contact force between wires. By taking advantage of the time-space compression characteristics of the method, the identification of anchor heads and flaws can be improved effectively and noise can also be decreased by driving the transducers again with the time reversed signal. Verification experiments show that the acoustical energy of guided waves can be focused on the position of flaws and the amplitude of flaws echo waves can be increased. At severe dispersion frequency, time reversal focusing process can improve the signal-noise ratio and suppress dispersion phenomenon caused by structural contact force

    Magnetostrictive Helical Array Transducers for Inspecting Spiral Welded Pipes Using Torsional Flexural Waves

    Get PDF
    Wavefront analysis indicates that a flexural wave propagates at a helix angle with respect to the pipe axis. The expression for calculation of the helix angle for each flexural mode is given, and the helix angle dispersion curves for flexural modes are calculated. According to the new understanding of flexural guided waves, a magnetostrictive helical array transducer (MHAT) is proposed for selectively exciting a single predominant flexural torsional guided wave in a pipe and inspecting spiral welded pipes using flexural waves. A MHAT contains a pre-magnetized magnetostrictive patch that is helically coupled with the outer surface of a pipe, and an array of novel compound comb coils that are wrapped around the helical magnetostrictive patch. The proposed wideband MHAT possesses the direction control ability. A verification experiment indicates that flexural torsional mode T(3,1) at center frequency f=64kHz is effectively actuated by a MHAT with 13-degree helix angle. A 20-degree MHAT is adopted to inspect a spiral welded pipe, an artificial notch with cross section loss CSL=2.7% is effectively detected by using flexural waves

    Signal Strength Enhancement of Magnetostrictive Patch Transducers for Guided Wave Inspection by Magnetic Circuit Optimization

    No full text
    Magnetostrictive patch transducers (MPT) with planar coils are ideal candidates for shear mode generation and detection in pipe and plate inspection with the advantages of flexibility, lightness and good directivity. However, the low energy conversion efficiency limits the application of the MPT in long distance inspection. In this article, a method for the enhancement of the MPT was proposed by dynamic magnetic field optimization using a soft magnetic patch (SMP). The SMP can reduce the magnetic resistance of the magnetic circuit, which increases the dynamic magnetic field intensity in the magnetostrictive patch during wave generation and restricts the induced dynamic magnetic field within the area around the coils for sensing during wave detection. Numerical simulations carried out at different frequencies verified the improvement of the dynamic magnetic fields by the SMP and influence of different affecting factors. The experimental validations of the signal enhancement in wave generation and detection were performed in an aluminum plate. The amplitude magnification could reach 12.7 dB when the MPTs were covered by the SMPs. Based on the numerical and experimental results, the SMP with a large relative permeability and thickness and close fitting between the SMP and coils were recommended when other application conditions were met

    Magnetostrictive Helical Array Transducers for Inspecting Spiral Welded Pipes Using Torsional Flexural Waves

    Get PDF
    Wavefront analysis indicates that a flexural wave propagates at a helix angle with respect to the pipe axis. The expression for calculation of the helix angle for each flexural mode is given, and the helix angle dispersion curves for flexural modes are calculated. According to the new understanding of flexural guided waves, a magnetostrictive helical array transducer (MHAT) is proposed for selectively exciting a single predominant flexural torsional guided wave in a pipe and inspecting spiral welded pipes using flexural waves. A MHAT contains a pre-magnetized magnetostrictive patch that is helically coupled with the outer surface of a pipe, and an array of novel compound comb coils that are wrapped around the helical magnetostrictive patch. The proposed wideband MHAT possesses the direction control ability. A verification experiment indicates that flexural torsional mode T(3,1) at center frequency f=64kHz is effectively actuated by a MHAT with 13-degree helix angle. A 20-degree MHAT is adopted to inspect a spiral welded pipe, an artificial notch with cross section loss CSL=2.7% is effectively detected by using flexural waves.</p

    Time Reversal Method for Arch Bridge Cables Inspection using Longitudinal Guided Waves

    Get PDF
    Arch bridge cables consist of anchor heads, steel wires parallel arranged in an equilateral hexagon and hot-extruding PE sheathing layers outside the wires. The complex structure and contact force between wires aggravates the dispersion and attenuation of guided waves in steel wires. In order to reduce the attenuation of acoustical energy, below 80kHz low-frequency longitudinal guided waves is usually adopted. Low-frequency guided waves attenuate more slowly than high-frequency waves, but the received signal packets are wider and less recognizable. In this paper, the process of the time reversal method[1] is presented and the related parameters are calculated. Over a wide frequency range, using narrow-band pulse signals with different center-frequencies to drive comb-like magnetostrictive transducer array round the cable, extract the echo signals, which contains some feature information such as flaws, anchor heads, structural noise caused by contact force between wires. By taking advantage of the time-space compression characteristics of the method, the identification of anchor heads and flaws can be improved effectively and noise can also be decreased by driving the transducers again with the time reversed signal. Verification experiments show that the acoustical energy of guided waves can be focused on the position of flaws and the amplitude of flaws echo waves can be increased. At severe dispersion frequency, time reversal focusing process can improve the signal-noise ratio and suppress dispersion phenomenon caused by structural contact force.</p

    Numerical and Experimental Investigation of Guided Wave Propagation in a Multi-Wire Cable

    No full text
    Ultrasonic guided waves (UGWs) have attracted attention in the nondestructive testing and structural health monitoring (SHM) of multi-wire cables. They offer such advantages as a single measurement, wide coverage of the acoustic field, and long-range propagation ability. However, the mechanical coupling of multi-wire structures complicates the propagation behaviors of guided waves and signal interpretation. In this paper, UGW propagation in these waveguides is investigated theoretically, numerically, and experimentally from the perspective of dispersion and wave structure, contact acoustic nonlinearity (CAN), and wave energy transfer. Although the performance of all possible propagating wave modes in a multi-wire cable at different frequencies could be obtained by dispersion analysis, it is ineffective to analyze the frequency behaviors of the wave signals of a certain mode, which could be analyzed using the CAN effect. The CAN phenomenon of two mechanically coupled wires in contact was observed, which was demonstrated by numerical guided wave simulation and experiments. Additionally, the measured guided wave energy of wires located in different layers of an aluminum conductor steel-reinforced cable accords with the theoretical prediction. The model of wave energy distribution in different layers of a cable also could be used to optimize the excitation power of transducers and determine the effective monitoring range of SHM

    Ultrasonic Guided Wave-Based Circumferential Scanning of Plates Using a Synthetic Aperture Focusing Technique

    No full text
    Tanks are essential facilities for oil and chemical storage and transportation. As indispensable parts, the tank floors have stringent nondestructive testing requirements owing to their severe operating conditions. In this article, a synthetic aperture focusing technology method is proposed for the circumferential scanning of the tank floor from the edge outside the tank using ultrasonic guided waves. The zeroth shear horizontal (SH0) mode is selected as an ideal candidate for plate inspection, and the magnetostrictive sandwich transducer (MST) is designed and manufactured for the generation and receiving of the SH0 mode. Based on the exploding reflector model (ERM), the relationships between guided wave fields at different radii of polar coordinates are derived in the frequency domain. The defect spot is focused when the sound field is calculated at the radius of the defect. Numerical and experimental validations are performed for the defect inspection in an iron plate. The angular bandwidth of the defect spot is used as an index for the angular resolution. The results of the proposed method show significant improvement compared to those obtained by the B-scan method, and it is found to be superior to the conventional method&mdash;named delay and sum (DAS)&mdash;in both angular resolution and calculation efficiency
    corecore