4,028 research outputs found

    Questioning the validity of non-extensive thermodynamics for classical Hamiltonian systems

    Full text link
    We examine the non-extensive approach to the statistical mechanics of Hamiltonian systems with H=T+VH=T+V where TT is the classical kinetic energy. Our analysis starts from the basics of the formalism by applying the standard variational method for maximizing the entropy subject to the average energy and normalization constraints. The analytical results show (i) that the non-extensive thermodynamics formalism should be called into question to explain experimental results described by extended exponential distributions exhibiting long tails, i.e. qq-exponentials with q>1q>1, and (ii) that in the thermodynamic limit the theory is only consistent in the range 0q10\leq q\leq1 where the distribution has finite support, thus implying that configurations with e.g. energy above some limit have zero probability, which is at variance with the physics of systems in contact with a heat reservoir. We also discuss the (qq-dependent) thermodynamic temperature and the generalized specific heat.Comment: To appear in EuroPhysics Letter

    Constraining the evolution of the CMB temperature with SZ measurements from Planck data

    Full text link
    The CMB temperature-redshift relation, T_CMB(z)=T_0(1+z), is a key prediction of the standard cosmology, but is violated in many non standard models. Constraining possible deviations to this law is an effective way to test the LambdaCDM paradigm and to search for hints of new physics. We have determined T_CMB(z), with a precision up to 3%, for a subsample (104 clusters) of the Planck SZ cluster catalog, at redshift in the range 0.01-- 0.94, using measurements of the spectrum of the Sunyaev Zel'dovich effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T_CMB(z) at cluster redshift relies on the use of SZ intensity change, Delta I_SZ(nu), at different frequencies, and on a Monte-Carlo Markov Chain approach. By applying this method to the sample of 104 clusters, we limit possible deviations of the form T_CMB(z)=T_0(1+z)^(1-beta) to be beta= 0.022 +/- 0.018, at 1 sigma uncertainty, consistent with the prediction of the standard model. Combining these measurements with previously published results we get beta=0.016+/-0.012.Comment: submitted to JCAP, 21 pages, 8 figure

    Fine-Structure Map of the Histidine Transport Genes in \u3cem\u3eSalmonella typhimurium\u3c/em\u3e

    Get PDF
    Afine-structure genetic map of the histidine transport region of the Salmonella typhimurium chromosome was constructed. Twenty-five deletion mutants were isolated and used for dividing the hisJ and hisP genes into 8 and 13 regions respectively. A total of 308 mutations, spontaneous and mutagen induced, have been placed in these regions by deletion mapping. The histidine transport operon is presumed to be constituted of genes dhuA, hisJ, and hisP, and the regulation of the hosP and hisJ genes by dhuA is discussed. The orientation of this operon relative to purF has been established by three-point crosses as being: purF duhA hisJ hisP

    Thermo-statistics of irreversible processes: a Boltzmann-Gibbs-style ensemble formalism

    Get PDF
    The area of Physics indicated in the title is nowadays of quite relevant interest, not only from the purely scientific point of view, but specially for its applied aspects associated to the present-time point-first-technologies. A particular research trend in the theory of irreversible processes, which are evolving in time in systems arbitrarily departed from equilibrium, is here briefly described. It consists in the construction of a Gibbs-style nonequilibrium ensemble formalism. The derivation of a nonequilibrium statistical operator is described (the variational approach of Predictive Statistical Mechanics is used). The main questions involved are presented and applications are briefly mentioned.97106Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore