12 research outputs found

    Reconstructing glacial outburst floods (jökulhlaups) from geomorphology: challenges, solutions, and an enhanced interpretive framework

    Get PDF
    Glacial outburst floods (jökulhlaups) have been significant drivers of landscape change across Earth throughout the Quaternary and are a contemporary hazard in Arctic and alpine regions worldwide. Geomorphologic evidence is a foundation for reconstructing past and contemporary flood events and using additional analytical methods such as geochronology and paleohydraulics. Yet, accurate interpretation of jökulhlaup landforms and depositional sequences poses a persistent challenge due to complex controls on flood hydraulics and landscape evolution. Researchers have developed numerous strategies to reduce or resolve these challenges, but a comprehensive, globally applicable model to interpret flood evidence outside of sedimentary environments is lacking. This article synthesizes existing case studies to describe jökulhlaup geomorphologic interpretive challenges, discuss strategies to resolve them, and present a conceptual model of flood landform assemblages to illustrate hydraulic and environmental controls on resultant geomorphologic impacts. This enhanced interpretive framework aids researchers in identifying, interpreting, and testing geomorphologic evidence to reconstruct past jökulhlaups and predict future flood impacts as robustly as possible at a global, landscape-wide scale. Understanding jökulhlaup geomorphology yields insight into glacial lake and ice margin dynamics, the role of extreme events in landscape evolution, and interactions between climate, ice sheets, and hydrology. Moreover, it is increasingly important as glacial outburst floods may become more frequent due to climate-driven ice retreat, advancing predictive capacities to mitigate societal risk downstream.</div

    Human and natural impacts on fluvial and karst depressions of the Maya Lowlands

    No full text
    This paper begins to differentiate the major drivers and chronology of erosion and aggradation in the fluvial and fluviokarst landscapes of the southern and central Maya Lowlands. We synthesize past research on erosion and aggradation and add new data from water, soils, radiocarbon dating, and archaeology to study the quantity, timing, and causes of aggradation in regional landscape depressions. Geomorphic findings come from many excavations across a landscape gradient from upland valleys, karst sinks, and fans into the coastal plain floodplains and depressions. Findings from water chemistry show that sources in the uplands have low quantities of dissolved ions but water in the coastal plains has high amounts of dissolved ions, often nearly saturated in calcium and sulfate. We found significant geomorphic complexity in the general trends in upland karst sinks. In a few instances, sediments preserve Late Pleistocene paleosols, buried 2–3 m, though many more have distinct middle to late Holocene paleosols, buried 1–2 m, after c. 2300 BP (Maya Early to Late Preclassic). From 2300–1100 BP (Late Preclassic to Classic Periods), the landscape aggraded from five main mechanisms: river flooding, climatic instability, accelerated erosion, ancient Maya landscape manipulation, and gypsum precipitation from a rise in a water table nearly saturated in calcium and sulfate ions. Evidence exists for two or three high magnitude floods, possibly driven by hurricanes. Moreover, lake-core and geophysical studies from the Petén Lakes region have shown high rates of deposition of silicate clays (‘Maya Clays’) starting and peaking during the Maya Preclassic and continuing to be high through the Late Classic. The main driver on upland karst depressions, the Petén lakes, upland valleys, and fans was accelerated soil erosion, but water table rise, probably driven by sea-level rise, was the main driver on the wetlands of the coastal plain because the aggraded sediments here are dominantly composed of gypsum, precipitated from the groundwater. This latter mechanism represents a little recognized mechanism of aggradation over a large region. These large scale environmental changes occurred during periods of intensive ancient Maya land use and climatic instability, both of which may have contributed to erosion by increasing runoff. Despite these geomorphic changes, ancient Maya farmers adapted in several key cases

    Wetland fields as mirrors of drought and the Maya abandonment

    No full text
    Getting at the Maya Collapse has both temporal and geographic dimensions, because it occurred over centuries and great distances. This requires a wide range of research sites and proxy records, ranging from lake cores to geomorphic evidence, such as stratigraphy and speleothems. This article synthesizes these lines of evidence, together with previously undescribed findings on Maya wetland formation and use in a key region near the heart of the central Maya Lowlands. Growing lines of evidence point to dryer periods in Maya history, which correlate to major periods of transition. The main line of evidence in this paper comes from wetland use and formation studies, which show evidence for both large-scale environmental change and human adaptation or response. Based on multiproxy studies, Maya wetland fields had a long and varied history, but most evidence indicates the start of disuse during or shortly after the Maya Terminal Classic. Hence, the pervasiveness of collapse extended into a range of wetlands, including perennial wetlands, which should have been less responsive to drought as a driver of disuse. A synthesis of the lines of evidence for canal infilling shows no attempts to reclaim them after the Classic Period

    Kax and kol: Collapse and resilience in lowland Maya civilization

    No full text
    Episodes of population loss and cultural change, including the famous Classic Collapse, punctuated the long course of Maya civilization. In many cases, these downturns in the fortunes of individual sites and entire regions included significant environmental components such as droughts or anthropogenic environmental degradation. Some afflicted areas remained depopulated for long periods, whereas others recovered more quickly. We examine the dynamics of growth and decline in several areas in the Maya Lowlands in terms of both environmental and cultural resilience and with a focus on downturns that occurred in the Terminal Preclassic (second century Common Era) and Terminal Classic (9th and 10th centuries CE) periods. This examination of available data indicates that the elevated interior areas of the Yucatán Peninsula were more susceptible to system collapse and less suitable for resilient recovery than adjacent lower-lying areas
    corecore