464 research outputs found

    Wetting transparency of graphene in water

    Get PDF
    Measurements of contact angle on graphene sheets show a notable dependence on the nature of the underlying substrate, a phenomenon termed wetting transparency. Our molecular modeling studies reveal analogous transparency in case of submerged graphene fragments in water. A combined effect of attractive dispersion forces, angle correlations between aqueous dipoles, and repulsion due to the hydrogen-bond-induced orientation bias in polarized hydration layers acting across graphene sheet, enhances apparent adhesion of water to graphene. We show wetting free energy of a fully wetted graphene platelet to be about 8 mNm−1 lower than for graphene wetted only on one side, which gives close to 10◦ reduction in contact angle. This difference has potential implications for predictions of water absorption vs. desorption, phase behavior of water in aqueous nanoconfinements, solvent- induced interactions among graphitic nanoparticle and concomitant stability in aqueous dispersions, and can influence permeability of porous materials such as carbon nanotubes by water and aqueous solutions

    Hedonic analysis of waterfowl hunting lease attributes : an evaluation of owner-provided services

    Get PDF
    The role of owner-provided services in fee-based recreation access is evaluated for the case of waterfowl hunting. An hedonic framework is used to analyze and estimate the implicit price of some waterfowl hunting lease attributes. A mail survey of Louisiana waterfowl hunters provides primary data for estimation of the hedonic price model specified in semi-log functional form. The willingness-to-pay functions for increased acreage per hunting club member, increased lease time, and travel distance are also empirically estimated, providing information on the implicit demand for these lease characteristics

    Synthesis and cation-receptor properties of macrocyclic imines of anthraquinone

    Get PDF
    At the present study a series of crown-containing imines of 1-hydroxy-9,10-anthraquinone with donor and acceptor substituents at the anthraquinone nucleus were synthesized. Compounds were prepared photochemically from the corresponding photoactive 1-phenoxyanthraquinones and 4-aminobenzo-15-crown-5 ether. It was established spectrophotometrically that for crown-containing anthraquinone imines that are characterized by "imine-enamine" prototropic tautomerism, the insertion of acceptor substituents shifts the equilibrium to the "enamine" form. This shift leads to essential spectral changes in complexing chlor- and nitrocontaining macrocyclic imines of anthraquinone with alkali and alkaline-earth metal cations

    Hydrogen Bond Dynamics Near A Micellar Surface: Origin of the Universal Slow Relaxation at Complex Aqueous Interfaces

    Full text link
    The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than a hundred picosecond. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5kcal/mole.Comment: 12 pages. Phys. Rev. Lett. (Accepted) (2002

    Electronic transport properties of the Al0.5TiZrPdCuNi alloy in the high-entropy alloy and metallic glass forms

    Get PDF
    High-entropy alloys (HEAs) are characterized by a simultaneous presence of a crystal lattice and an amorphous-type chemical (substitutional) disorder. In order to unravel the effect of crystal-glass duality on the electronic transport properties of HEAs, we performed a comparative study of the electronic transport coefficients of a 6-component alloy Al0.5TiZrPdCuNi that can be prepared either as a HEA or as a metallic glass (MG) at the same chemical composition. The HEA and the MG states of the Al0.5TiZrPdCuNi alloy both show large, negative-temperature-coefficient resistivity, positive thermopower, positive Hall coefficient and small thermal conductivity. The transport coefficients were reproduced analytically by the spectral conductivity model, using the Kubo-Greenwood formalism. For both modifications of the material (HEA and MG), contribution of phonons to the transport coefficients was found small, so that their temperature dependence originates predominantly from the temperature dependence of the Fermi-Dirac function and the variation of the spectral conductivity and the related electronic density of states with energy within the Fermi-level region. The very similar electronic transport coefficients of the HEA and the MG states point towards essential role of the immense chemical disorder

    Structure and superconductivity of tin-containing hftizrsnm (M = cu, fe, nb, ni) medium-entropy and high-entropy alloys

    Get PDF
    In an attempt to incorporate tin (Sn) into high-entropy alloys composed of refractory metals Hf, Nb, Ti and Zr with the addition of 3d transition metals Cu, Fe, and Ni, we synthesized a series of alloys in the system HfTiZrSnM (M = Cu, Fe, Nb, Ni). The alloys were characterized crystallographically, microstructurally, and compositionally, and their physical properties were determined, with the emphasis on superconductivity. All Sn-containing alloys are multi-phase mixtures of intermetallic compounds (in most cases four). A common feature of the alloys is a microstructure of large crystalline grains of a hexagonal (Hf, Ti, Zr)5Sn3 partially ordered phase embedded in a matrix that also contains many small inclusions. In the HfTiZrSnCu alloy, some Cu is also incorporated into the grains. Based on the electrical resistivity, specific heat, and magnetization measurements, a superconducting (SC) state was observed in the HfTiZr, HfTiZrSn, HfTiZrSnNi, and HfTiZrSnNb alloys. The HfTiZrSnFe alloy shows a partial SC transition, whereas the HfTiZrSnCu alloy is non-superconducting. All SC alloys are type II superconductors and belong to the Anderson class of “dirty” superconductors

    Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators?

    Get PDF
    As well as nutritional rewards, some plants also reward ectothermic pollinators with warmth. Bumble bees have some control over their temperature, but have been shown to forage at warmer flowers when given a choice, suggesting that there is some advantage to them of foraging at warm flowers (such as reducing the energy required to raise their body to flight temperature before leaving the flower). We describe a model that considers how a heat reward affects the foraging behaviour in a thermogenic central-place forager (such as a bumble bee). We show that although the pollinator should spend a longer time on individual flowers if they are warm, the increase in total visit time is likely to be small. The pollinator's net rate of energy gain will be increased by landing on warmer flowers. Therefore, if a plant provides a heat reward, it could reduce the amount of nectar it produces, whilst still providing its pollinator with the same net rate of gain. We suggest how heat rewards may link with plant life history strategies
    corecore