4,482 research outputs found

    Determining efficient temperature sets for the simulated tempering method

    Full text link
    In statistical physics, the efficiency of tempering approaches strongly depends on ingredients such as the number of replicas RR, reliable determination of weight factors and the set of used temperatures, TR={T1,T2,…,TR}{\mathcal T}_R = \{T_1, T_2, \ldots, T_R\}. For the simulated tempering (SP) in particular -- useful due to its generality and conceptual simplicity -- the latter aspect (closely related to the actual RR) may be a key issue in problems displaying metastability and trapping in certain regions of the phase space. To determine TR{\mathcal T}_R's leading to accurate thermodynamics estimates and still trying to minimize the simulation computational time, here it is considered a fixed exchange frequency scheme for the ST. From the temperature of interest T1T_1, successive TT's are chosen so that the exchange frequency between any adjacent pair TrT_r and Tr+1T_{r+1} has a same value ff. By varying the ff's and analyzing the TR{\mathcal T}_R's through relatively inexpensive tests (e.g., time decay toward the steady regime), an optimal situation in which the simulations visit much faster and more uniformly the relevant portions of the phase space is determined. As illustrations, the proposal is applied to three lattice models, BEG, Bell-Lavis, and Potts, in the hard case of extreme first-order phase transitions, always giving very good results, even for R=3R=3. Also, comparisons with other protocols (constant entropy and arithmetic progression) to choose the set TR{\mathcal T}_R are undertaken. The fixed exchange frequency method is found to be consistently superior, specially for small RR's. Finally, distinct instances where the prescription could be helpful (in second-order transitions and for the parallel tempering approach) are briefly discussed.Comment: 10 pages, 14 figure

    Quantum effective force in an expanding infinite square-well potential and Bohmian perspective

    Full text link
    The Schr\"{o}dinger equation is solved for the case of a particle confined to a small region of a box with infinite walls. If walls of the well are moved, then, due to an effective quantum nonlocal interaction with the boundary, even though the particle is nowhere near the walls, it will be affected. It is shown that this force apart from a minus sign is equal to the expectation value of the gradient of the quantum potential for vanishing at the walls boundary condition. Variation of this force with time is studied. A selection of Bohmian trajectories of the confined particle is also computed.Comment: 7 figures, Accepted by Physica Script

    Matter-wave 2D solitons in crossed linear and nonlinear optical lattices

    Full text link
    It is demonstrated the existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with linear OL in the x−x-direction and nonlinear OL (NOL) in the y−y-direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance. In particular, we show that such crossed linear and nonlinear OL allows to stabilize two-dimensional (2D) solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach (VA), with the Vakhitov-Kolokolov (VK) necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation (GPE). Very good agreement of the results corresponding to both treatments is observed.Comment: 8 pages (two-column format), with 16 eps-files of 4 figure
    • …
    corecore