3 research outputs found
Discovery of Potent and Highly Selective A<sub>2B</sub> Adenosine Receptor Antagonist Chemotypes
Three novel families of A<sub>2B</sub> adenosine receptor antagonists
were identified in the context of the structural exploration of the
3,4-dihydropyrimidin-2(1<i>H</i>)-one chemotype. The most
appealing series contain imidazole, 1,2,4-triazole, or benzimidazole
rings fused to the 2,3-positions of the parent diazinone core. The
optimization process enabled identification of a highly potent (3.49
nM) A<sub>2B</sub> ligand that exhibits complete selectivity toward
A<sub>1</sub>, A<sub>2A</sub>, and A<sub>3</sub> receptors. The results
of functional cAMP experiments confirmed the antagonistic behavior
of representative ligands. The main SAR trends identified within the
series were substantiated by a molecular modeling study based on a
receptor-driven docking model constructed on the basis of the crystal
structure of the human A<sub>2A</sub> receptor
Three-Dimensional Printing in Catalysis: Combining 3D Heterogeneous Copper and Palladium Catalysts for Multicatalytic Multicomponent Reactions
Two 3D-hybrid monolithic
catalysts containing immobilized copper
and palladium species on a silica support were synthesized by 3D printing
and a subsequent surface functionalization protocol. The resulting
3D monoliths provided a structure with pore sizes around 300 μm,
high mechanical strength, and easy catalyst recyclability. The devices
were designed to perform heterogeneous multicatalytic multicomponent
reactions (MMCRs) based on a copper alkyne–azide cycloaddition
(CuAAC) + palladium catalyzed cross-coupling (PCCC) strategy, which
allowed the rapid assembly of variously substituted 1,2,3-triazoles
using a mixture of tBuOH/H<sub>2</sub>O as solvent. The reusable multicatalytic
system developed in this work is an example of a practical miniaturized
and compartmental heterogeneous 3D-printed metal catalyst to perform
MMCRs for solution chemistry
Discovery of Potent and Highly Selective A<sub>2B</sub> Adenosine Receptor Antagonist Chemotypes
Three novel families of A<sub>2B</sub> adenosine receptor antagonists
were identified in the context of the structural exploration of the
3,4-dihydropyrimidin-2(1<i>H</i>)-one chemotype. The most
appealing series contain imidazole, 1,2,4-triazole, or benzimidazole
rings fused to the 2,3-positions of the parent diazinone core. The
optimization process enabled identification of a highly potent (3.49
nM) A<sub>2B</sub> ligand that exhibits complete selectivity toward
A<sub>1</sub>, A<sub>2A</sub>, and A<sub>3</sub> receptors. The results
of functional cAMP experiments confirmed the antagonistic behavior
of representative ligands. The main SAR trends identified within the
series were substantiated by a molecular modeling study based on a
receptor-driven docking model constructed on the basis of the crystal
structure of the human A<sub>2A</sub> receptor