5 research outputs found

    Transcriptional profiling of Petunia seedlings reveals candidate regulators of the cold stress response

    Get PDF
    Petunias are important ornamentals with the capacity for cold acclimation. So far, there is limited information concerning gene regulation and signaling pathways related to the cold stress response in petunias. A custom-designed petunia microarray representing 24816 genes was used to perform transcriptome profiling in petunia seedlings subjected to cold at 2°C for 0.5 h, 2 h, 24 h and 5 d. A total of 2071 transcripts displayed differential expression patterns under cold stress, of which 1149 were up-regulated and 922 were down-regulated. Gene ontology enrichment analysis demarcated related biological processes, suggesting a possible link between flavonoid metabolism and plant adaptation to low temperatures. Many novel stress-responsive regulators were revealed, suggesting that diverse regulatory pathways may exist in petunias in addition to the well-characterized CBF pathway. The expression changes of selected genes under cold and other abiotic stress conditions were confirmed by real-time RT-PCR. Furthermore, weighted gene co-expression network analysis divided the petunia genes on the array into 65 modules that showed high co-expression and identified stress-specific hub genes with high connectivity. Our identification of these transcriptional responses and groups of differentially expressed regulators will facilitate the functional dissection of the molecular mechanism in petunias responding to environment stresses and extend our ability to improve cold tolerance in plants

    Transcriptomic and Proteomic Analysis of Shaan2A Cytoplasmic Male Sterility and Its Maintainer Line in Brassica napus

    Get PDF
    Cytoplasmic male sterility (CMS) lines are widely used for hybrid production in Brassica napus. The Shaan2A CMS system is one of the most important in China and has been used for decades; however, the male sterility mechanism underlying Shaan2A CMS remains unknown. Here, we performed transcriptomic and proteomic analysis, combined with additional morphological observation, in the Shaan2A CMS. Sporogenous cells, endothecium, middle layer, and tapetum could not be clearly distinguished in Shaan2A anthers. Furthermore, Shaan2A anther chloroplasts contained fewer starch grains than those in Shaan2B (a near-isogenic line of Shaan2A), and the lamella structure of chloroplasts in Shaan2A anther wall cells was obviously aberrant. Transcriptomic analysis revealed differentially expressed genes (DEGs) mainly related to carbon metabolism, lipid and flavonoid metabolism, and the mitochondrial electron transport/ATP synthesis pathway. Proteomic results showed that differentially expressed proteins were mainly associated with carbohydrate metabolism, energy metabolism, and genetic information processing pathways. Importantly, nine gene ontology categories associated with anther and pollen development were enriched among down-regulated DEGs at the young bud (YB) stage, including microsporogenesis, sporopollenin biosynthetic process, and tapetal layer development. Additionally, 464 down-regulated transcription factor (TF) genes were identified at the YB stage, including some related to early anther differentiation such as SPOROCYTELESS (SPL, also named NOZZLE, NZZ), DYSFUNCTIONAL TAPETUM 1 (DYT1), MYB80 (formerly named MYB103), and ABORTED MICROSPORES (AMS). These results suggested that the sterility gene in the Shaan2A mitochondrion might suppress expression of these TF genes in the nucleus, affecting early anther development. Finally, we constructed an interaction network of candidate proteins based on integrative analysis. The present study provides new insights into the molecular mechanism of Shaan2A CMS in B. napus

    Intratumoural delivery of TRAIL mRNA induces colon cancer cell apoptosis

    No full text
    Novel strategies in intratumoral injection and emerging immunotherapies have heralded a new era of precise cancer treatments. The affinity of SARS-CoV-2 to ACE2 receptors, a feature which facilitates virulent human infection, is leveraged in this research. Colon cancer cells, with their high ACE2 expression, provide a potentially strategic target for using this SARS-CoV-2 feature. While the highly expression of ACE2 is observed in several cancer types, the idea of using the viral spike protein for targeting colon cancer cells offers a novel approach in cancer treatment. Intratumoral delivery of nucleic acid-based drugs is a promising alternative to overcoming the limitations of existing therapies. The increasing importance of nucleic acids in this realm, and the use of Lipid Nanoparticles (LNPs) for local delivery of nucleic acid therapeutics, are important breakthroughs. LNPs protect nucleic acid drugs from degradation and enhance cellular uptake, making them a rapidly evolving nano delivery system with high precision and adaptability. Our study leveraged a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) combined with a receptor-binding domain from the SARS-CoV-2 spike protein, encapsulated in LNPs, to target colon cancer cells. Our results indicated that the TRAIL fusion-mRNA induced apoptosis in vitro and in vivo. Collectively, our findings highlight LNP-encapsulated TRAIL fusion-mRNA as a potential colon cancer therapy
    corecore