14 research outputs found

    Dose fractionation effects in primary and metastatic human uveal melanoma cell lines

    Get PDF
    PURPOSE: To investigate the effects of split-dose irradiation on primary and metastatic uveal melanoma cell lines, with a clonogenic survival assay. METHODS: Appropriate cell concentrations of four primary and four metastatic human uveal melanoma cell lines were cultured for irradiation with single doses and with two equal fractions separated by 5 hours. After irradiation, colony formation was allowed for 7 to 21 days. Two cutaneous melanomas were also tested for comparison. All survival curves were analyzed using the linear quadratic (LQ) model. Specific parameters for the intrinsic radiosensitivity (alpha-component, SF2), for the capacity of repair of DNA damage (beta-component), as well as the alpha/beta ratio were calculated. RESULTS: After single-dose irradiation a wide range in the values of the alpha- and beta-component was obtained for both primary and metastatic uveal melanomas, which resulted in a wide range of alpha/beta ratios. In contrast, calculations based on split-dose data, with which the beta-component could be estimated independent of the alpha-component, indicated that estimates for the capacity of sublethal DNA damage repair was very similar in all cell lines. This indicated that intrinsic factors dominated the radiosensitivity of these cell lines. Split-dose irradiation had little influence on the intrinsic radiosensitivity (alpha-component), but cell survival increased for all cell lines. For the two cutaneous melanomas comparable split-dose results were obtained. CONCLUSIONS: For both primary and metastatic uveal melanoma cell lines, data from single and fractionated doses indicate large variations in radiosensitivity, which are mainly dominated by the intrinsic radiosensitivities. Doses of approximately 8 Gy in five fractions would be sufficient to eradicate 10(9) cells (approximately 1 cm3) of the most radioresistant tumor cell lines, but this schedule is an overkill for the radiosensitive tumor cell lines. Based on specific morphologic and histologic tumor markers, more individualized dose fractionation schedules could improve the therapeutic ratio for uveal melanomas

    Cellular radiosensitivity of primary and metastatic human uveal melanoma cell lines

    Get PDF
    PURPOSE: To investigate the radiosensitivity of uveal melanoma cell lines by a clonogenic survival assay, to improve the efficiency of the radiation regimen. METHODS: Four primary and four metastatic human uveal melanoma cell lines were cultured in the presence of conditioned medium. After single-dose irradiation (0-12 Gy), colonies were allowed to form for 6 to 14 days. Two cutaneous melanomas cell lines were also tested for comparison. The survival curves were analyzed by the linear quadratic (LQ) model, and the surviving fraction at a dose of 2 Gy (SF(2)), the SF at 10 Gy (SF(10)), the ratio of initial irreparably damaged DNA (alpha-coefficient) to the capacity to repair sublethally damaged DNA (beta-coefficient), and the plating efficiency were calculated. RESULTS: The melanomas displayed a wide range of initial irreparable DNA damage (alpha-component), as well as a capacity for repair of sublethal DNA damage (beta-component), which ultimately resulted in a wide range of alpha/beta ratios. These findings were similar in both primary and metastatic melanomas and were comparable with data obtained from two cutaneous melanomas. CONCLUSIONS: Cell lines obtained from primary and metastatic human uveal melanomas displayed a wide range of radiosensitivity, similar to that published for cutaneous melanomas. Translating these data to the clinical setting indicates that a fractionated dose of 8 to 10 Gy administered in three to four fractions, as currently delivered in many centers, should be sufficient to eradicate tumors of approximately 1 cm(3)

    Improved interchangeability with different corneal specular microscopes for quantitative endothelial cell analysis

    Get PDF
    Introduction: During our clinical practice and research, we encountered an interchangeability problem when using the SP-2000P and SP-3000P TopCon corneal specular microscopes (CSMs) (TopCon Medical Systems, Tokyo, Japan) regarding the endothelial cell count (ECC). We describe a method to improve interchangeability between these CSMs. Methods: Five consecutive good-quality endothelial cell photographs were obtained in 22 eyes of 11 subjects. An ECC comparison between the two CSMs was performed after (I) gauging and calibration by the manufacturer, (II) adjustment of the magnification, (III) correction after external horizontal and vertical calibration. Results: There was a statistically significant difference between the ECC of the SP-2000P and SP-3000P at the start. The SP-2000P counted an average of 500 cells/mm2 more than the SP-3000P (p=0.00). After correction for magnification and determining a correction factor based on external calibration, the difference between the ECC of the SP-2000P and the SP-3000P was then found to be 0.4 cells/mm2 and was not statistically significant (p=0.98). Discussion: We propose a method for improving interchangeability, which involves checking magnification settings, re-checking magnification calibration with external calibration devices, and then calculating correction factors. This method can be applied to various specular or confocal microscopes and their associated endothelial cell analysis software packages to be able to keep performing precise endothelial cell counts and to enable comparison of ECCs when a CSM needs to be replaced or when results from different microscopes need to be compared

    Detection of genetic prognostic markers in uveal melanoma biopsies using fluorescence in situ hybridization

    Get PDF
    PURPOSE: In uveal melanoma, specific chromosomal abnormalities are known to correlate with the risk of metastases; changes in chromosomes 3 and 8q correlate strongly with a decreased survival of the patient, whereas chromosome 6 abnormalities are associated with a better prognosis. Usual

    Tumour Angiogenesis in Uveal Melanoma Is Related to Genetic Evolution

    Get PDF
    Increased angiogenesis is associated with a higher metastasis- and mortality rate in uveal melanoma (UM). Recently, it was demonstrated that genetic events, such as 8q-gain and BAP1-loss, influence the level of immune infiltrate. We aimed to determine whether genetic events, and specific cytokines, relate to angiogenesis in UM. Data from UM patients who underwent enucleation between 1999 and 2008 were analysed. Microvascular density (MVD) and the presence of infiltrating immune cells were determined with immunohistochemistry (IHC) and immunofluorescence in 43 cases. Chromosome status, BAP1 IHC and mRNA expression of angiogenesis-related genes were known in 54 cases. Tumours with monosomy 3/BAP1-loss showed a higher MVD compared to tumours with disomy 3/normal BAP1 expression (p = 0.008 and p = 0.004, respectively). Within BAP1-positive lesions (n = 20), 8q-gain did not relate to MVD (p = 0.51). A high MVD was associated with an increased expression of angiopoietin 2 (ANGPT2) (p = 0.041), Von Willebrand Factor (VWF) (p = 0.010), a decreased expression of vascular endothelial growth factor B (VEGF-B) (p = 0.024), and increased numbers of tumour-infiltrating macrophages (CD68+, p = 0.017; CD68+CD163+, p = 0.031) and lymphocytes (CD4+, p = 0.027). Concluding, vascular density of UM relates to its genetic profile: Monosomy 3 and BAP1-loss are associated with an increased MVD, while an early event (gain of 8q) is not independently related to MVD, but may initiate a preparation phase towards development of vessels. Interestingly, VEGF-B expression is decreased in UM with a high MVD

    HDAC inhibition increases HLA class I expression in uveal melanoma

    Get PDF
    The treatment of uveal melanoma (UM) metastases or adjuvant treatment may imply immunological approaches or chemotherapy. It is to date unknown how epigenetic modifiers affect the expression of immunologically relevant targets, such as the HLA Class I antigens, in UM. We investigated the expression of HDACs and the histone methyl transferase EZH2 in a set of 64 UMs, using an Illumina HT12V4 array, and determined whether a histone deacetylase (HDAC) inhibitor and EZH2 inhibitor modified the expression of HLA Class I on three UM cell lines. Several HDACs (HDAC1, HDAC3, HDAC4, and HDAC8) showed an increased expression in high-risk UM, and were correlated with an increased HLA expression. HDAC11 had the opposite expression pattern. While in vitro tests showed that Tazemetostat did not influence cell growth, Quisinostat decreased cell sur

    Three-dimensional MRI-based treatment planning approach for non-invasive ocular proton therapy

    Get PDF
    Purpose: To develop a high-resolution three-dimensional (3D) magnetic resonance imaging (MRI)-based treatment planning approach for uveal melanomas (UM) in proton therapy. Materials/methods: For eight patients with UM, a segmentation of the gross tumor volume (GTV) and organs-at-risk (OARs) was performed on T1- and T2-weighted 7 Tesla MRI image data to reconstruct the patient MR-eye. An extended contour was defined with a 2.5-mm isotropic margin derived from the GTV. A broad beam algorithm, which we have called πDose, was implemented to calculate relative proton absorbed doses to the ipsilateral OARs. Clinically favorable gazing angles of the treated eye were assessed by calculating a global weighted-sum objective function, which set penalties for OARs and extreme gazing angles. An optimizer, which we have named OPT’im-Eye-Tool, was developed to tune the parameters of the functions for sparing critical-OARs. Results: In total, 441 gazing angles were simulated for every patient. Target coverage including margins was achieved in all the cases (V95% > 95%). Over the whole gazing angles solutions space, maximum dose (Dmax) to the optic nerve and the macula, and mean doses (Dmean) to the lens, the ciliary body and the sclera were calculated. A forward optimization was applied by OPT’im-Eye-Tool in three different prioritizations: iso-weighted, optic nerve prioritized, and macula prioritized. In each, the function values were depicted in

    Soluble HLA in the aqueous humour of uveal melanoma is associated with unfavourable tumour characteristics

    Get PDF
    A high HLA expression in uveal melanoma (UM) is part of the prognostically unfavorable inflammatory phenotype. We wondered whether the presence of soluble HLA (sHLA) in the aqueous humour is associated with clinical, histopathological or genetic tumour characteristics, and represents tumour HLA expression and intratumoural inflammation. Aqueous humour from 108 UM patients was analysed for the presence of sHLA, using a Luminex assay specific for HLA Class I. Clinical and genetic parameters were compared between sHLA-positive and negative eyes. A qPCR analysis was performed on tumour tissue using a Fluidigm assay. In 19/108 UM-containing eyes, the sHLA level in the aqueous was above the detection limit. Tumours in sHLA-positive eyes were significantly larger, more frequently involved the ciliary body, and more often showed monosomy 3, gain of chromosome 8q and loss of BAP1 staining. Melanoma-related survival was worse in patients with sHLA-positive aqueous humour. sHLA in the aqueous did not represent the tumour's HLA expression and did not relate to immune cell infiltration in the tumour. We conclude that UM-containing eyes may contain sHLA in the aqueous humour, where it is a prognostically-unfavourable sign and may influence local immune responses

    Aqueous Humor Biomarkers Identify Three Prognostic Groups in Uveal Melanoma

    Get PDF
    Purpose: To investigate whether we can identify different patterns of inflammation in the aqueous humor of a uveal melanoma (UM)-containing eye, and whether these are related to prognosis. Meth

    Multicenter external validation of the liverpool uveal melanoma prognosticator online: An OOG collaborative study

    Get PDF
    Uveal melanoma (UM) is fatal in ~50% of patients as a result of disseminated disease. This study aims to externally validate the Liverpool Uveal Melanoma Prognosticator Online V3 (LUMPO3) to determine its reliability in predicting survival after treatment for choroidal melanoma when utilizing external data from other ocular oncology centers. Anonymized data of 1836 UM patients from seven international ocular oncology centers were analyzed with LUMPO3 to predict the 10-year survival for each patient in each external dataset. The analysts were masked to the patient outcomes. Model predictions were sent to an independent statistician to evaluate LUMPO3’s performance using discrimination and calibration methods. LUMPO3’s ability to discriminate between UM patients who died of metastatic UM and those who were still alive was fair-to-good, with C-statistics ranging from 0.64 to 0.85 at year 1. The pooled estimate for all external centers was 0.72 (95% confidence interval: 0.68 to 0.75). Agreement between observed and predicted survival probabilities was generally good given differences in case mix and survival rates between different centers. Despite the differences between the international cohorts of patients with primary UM, LUMPO3 is a valuable tool for predicting all-cause mortality in this disease when using data from external centers
    corecore