155 research outputs found

    Application of large underground seasonal thermal energy storage in district heating system: A model-based energy performance assessment of a pilot system in Chifeng, China

    Get PDF
    Seasonal thermal energy storage (STES) technology is a proven solution to resolve the seasonal discrepancy between heating energy generation from renewables and building heating demands. This research focuses on the performance assessment of district heating (DH) systems powered by low-grade energy sources with large-scale, high temperature underground STES technology. A pilot DH system, located in Chifeng, China that integrates a 0.5 million m3 borehole thermal energy storage system, an on-site solar thermal plant and excess heat from a copper plant is presented. The research in this paper adopts a model-based approach using Modelica to analyze the energy performance of the STES for two district heating system configurations. Several performance indicators such as the extraction heat, the injection heat and the storage coefficient are selected to assess the STES system performance. Results show that a lower STES discharge temperature leads to a better energy performance. A sensitivity analysis of the site properties illustrates that the thermal conductivity of soil is the most influential parameter on the STES system performance. The long-term performance of the STES is also discussed and a shorter stabilization time between one and two years could be achieved by discharging the STES at a lower temperature.This research is part of the seasonal storage for solar and industrial waste heat utilization for urban district heating project funded by the Joint Scientific Thematic Research Programme (JSTP)–Smart Energy in Smart Cities. We gratefully acknowledge the financial support from the Netherlands Organisation for Scientific Research (NWO). We would also like to thank our research partners from Tsinghua University working on the project of the International S&T Cooperation Programof China (ISTCP) (project No. 2015DFG62410). Without their efforts, we would not have been able to obtain the technical data to conduct the case study

    Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    Full text link
    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices.This thesis presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed by electron-electron interactions, leading to remarkable resistance to diffusive spreading of the drifting pulse of spin polarization. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 107 cm s-1.We also use this phase-resolved Doppler velocimetry technique to perform the first simultaneous measurements of drift and diffusion of electron-hole packets in the same two-dimensional electron gas. The results that we obtain strongly violate the picture of electron-hole transport that is presented in the classic textbook treatments of ambipolar dynamics. We find that the rates of transport are controlled almost entirely by the intrinsic frictional force exerted between electrons and holes, rather than the interaction of carriers with phonons or impurities. From the experimental data we obtain the first measurement of the "Coulomb drag" friction between electrons and holes coexisting in the same two-dimensional layer. Moreover, we show that the frictional force thus obtained is in quantitative agreement with theoretically predicted values, which follow entirely from electron density, temperature and fundamental constants, i.e. no adjustable parameters. The understanding of ambipolar transport that we have achieved is an essential prerequisite to the design of those spintronic devices in which spin current is carried by the drift of polarized electrons and holes

    Ultrafast dynamics of fractional particles in α\alpha-RuCl3_3

    Full text link
    In a Kitaev spin liquid, electron spins can break into fractional particles known as Majorana fermions and Z2_2 fluxes. Recent experiments have indicated the existence of such fractional particles in a two-dimensional Kitaev material candidate, α\alpha-RuCl3_3. These exotic particles can be used in topological quantum computations when braided within their lifetimes. However, the lifetimes of these particles, critical for applications in topological quantum computing, have not been reported. Here we study ultrafast dynamics of photoinduced excitations in single crystals of α\alpha-RuCl3_3 using pump-probe transient grating spectroscopy. We observe intriguing photoexcited nonequilibrium states in the Kitaev paramagnetic regime between TNT_N~7 K and THT_H~100 K, where TNT_N is the N\'eel temperature and THT_H is set by the Kitaev interaction. Two distinct lifetimes are detected: a longer lifetime of ~50 ps, independent of temperature; a shorter lifetime of 1-20 ps, with a strong temperature dependence, T1.40T^{-1.40}. We analyze the transient grating signals using coupled differential equations and propose that the long and short lifetimes are associated with fractional particles in the Kitaev paramagnetic regime, Z2_2 fluxes and Majorana fermions, respectively

    Measurement of electron-hole friction in an n-doped GaAs/AlGaAs quantum well using optical transient grating spectroscopy

    Full text link
    We use phase-resolved transient grating spectroscopy to measure the drift and diffusion of electron-hole density waves in a semiconductor quantum well. The unique aspects of this optical probe allow us to determine the frictional force between a two-dimensional Fermi liquid of electrons and a dilute gas of holes. Knowledge of electron-hole friction enables prediction of ambipolar dynamics in high-mobility electron systems.Comment: to appear in PR
    corecore