92 research outputs found

    Therapeutic Administration of the Direct Thrombin Inhibitor Argatroban Reduces Hepatic Inflammation in Mice with Established Fatty Liver Disease

    Get PDF
    Thrombin generation is increased in patients with nonalcoholic fatty liver disease (NAFLD) and in mouse models of diet-induced obesity. Deficiency in the thrombin receptor protease activated receptor-1 reduces hepatic inflammation and steatosis in mice fed a Western diet. However, it is currently unclear whether thrombin inhibitors can modify the pathogenesis of established NAFLD. We tested the hypothesis that thrombin inhibition could reverse hepatic steatosis and inflammation in mice with established diet-induced NAFLD. Low-density lipoprotein receptor–deficient LDLr−/− mice were fed a control diet or a Western diet for 19 weeks. Mice were given the direct thrombin inhibitor argatroban ∼15 mg/kg/day or its vehicle via a miniosmotic pump for the final 4 weeks of the study. Argatroban administration significantly reduced hepatic proinflammatory cytokine expression and reduced macrophage and neutrophil accumulation in livers of mice fed a Western diet. Argatroban did not significantly impact hepatic steatosis, as indicated by histopathology, Oil Red O staining, and hepatic triglyceride levels. Argatroban reduced serum triglyceride and cholesterol levels in mice fed a Western diet. Argatroban reduced both α-smooth muscle actin expression and Type 1 collagen mRNA levels in livers of mice fed a Western diet, indicating reduced activation of hepatic stellate cells. This study indicates that therapeutic intervention with a thrombin inhibitor attenuates hepatic inflammation and several profibrogenic changes in mice fed a Western diet

    Rapamycin enhances LPS induction of tissue factor and tumor necrosis factor-α expression in macrophages by reducing IL-10 expression

    Get PDF
    Bacterial lipopolysaccharide (LPS) induces monocytes/macrophages to express proinflammatory cytokines and tissue factor (TF), the primary activator of the coagulation cascade. Anti-inflammatory signaling pathways including the phosphatidylinositol-3-kinase (PI3K)-Akt pathway inhibit proinflammatory and TF gene expression in macrophages. We determined the role of Akt, the mammalian target of rapamycin (mTOR) and interleukin-10 in the inhibition of LPS-induced proinflammatory cytokine and TF gene expression in peritoneal macrophages (PMs). We used wild type (WT) peritoneal macrophages (PMs), and PMs from PTENflox/flox/LysMCre mice (PTEN−/− PMs), which have increased Akt activity. Pharmacologic inhibition of mTOR with rapamycin inhibited LPS induction of IL-10 mRNA and protein, and enhanced the expression of TF and the proinflammatory cytokine TNFα in WT PMs. Furthermore, neutralizing IL-10 with anti-IL-10 antibody enhanced LPS induction of TNFα and TF expression in WT PMs. The addition of recombinant IL-10 abolished rapamycin enhancement of LPS-induced TNFα and TF expression in WT PMs. Consistent with enhanced Akt activation, LPS-induced IL-10 expression was increased in PTEN−/− PMs compared to WT PMs. In contrast, LPS-induced TNFα and TF expression was significantly reduced in PTEN−/− PMs compared to WT PMs. However, the neutralizing IL-10 antibody did not completely prevent inhibition of LPS-induced TNFα and TF expression in PTEN−/− PMs. The results indicate that mTOR-dependent IL-10 expression leads to inhibition of LPS induction of TF and the proinflammatory cytokine TNFα in WT macrophages. In contrast, the decrease in LPS-induced TNFα and TF expression in PTEN−/− PMs also requires an IL-10-independent pathway

    Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding

    Get PDF
    The nuclear factor E2-related factor 2 (Nrf2)–Kelch-like ECH-associated protein 1 (Keap1) pathway upregulates antioxidant and biotransformation enzyme expression to counter cellular oxidative stress. The contributions of Nrf2 to other cellular functions, such as lipid homeostasis, are emerging. This study was conducted to determine how enhanced Nrf2 activity influences the progression of metabolic syndrome with long-term high-fat diet (HFD) feeding. C57BL/6 and Keap1-knockdown (Keap1-KD) mice, which exhibit enhanced Nrf2 activity, were fed a HFD for 24 weeks. Keap1-KD mice had higher body weight and white adipose tissue mass compared to C57BL/6 mice on HFD, along with increased inflammation and lipogenic gene expression. HFD feeding increased hepatic steatosis and inflammation to a greater extent in Keap1-KD mice compared to C57BL/6 mice, which was associated with increased liver Cd36, fatty acid-binding protein 4, and monocyte chemoattractant protein 1 mRNA expression, as well as increased acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1 protein expression. The HFD altered short-term glucose homeostasis to a greater degree in Keap-KD mice compared to C57BL/6 mice, which was accompanied by downregulation of insulin receptor substrate 1 mRNA expression in skeletal muscle. Together, the results indicate that Keap1 knockdown, on treatment with HFD, increases certain markers of metabolic syndrome

    COX-2 suppresses tissue factor expression via endocannabinoid-directed PPARδ activation

    Get PDF
    Although cyclooxygenase (COX)-2 inhibitors (coxibs) are effective in controlling inflammation, pain, and tumorigenesis, their use is limited by the recent revelation of increased adverse cardiovascular events. The mechanistic basis of this side effect is not well understood. We show that the metabolism of endocannabinoids by the endothelial cell COX-2 coupled to the prostacyclin (PGI2) synthase (PGIS) activates the nuclear receptor peroxisomal proliferator–activated receptor (PPAR) δ, which negatively regulates the expression of tissue factor (TF), the primary initiator of blood coagulation. Coxibs suppress PPARδ activity and induce TF expression in vascular endothelium and elevate circulating TF activity in vivo. Importantly, PPARδ agonists suppress coxib-induced TF expression and decrease circulating TF activity. We provide evidence that COX-2–dependent attenuation of TF expression is abrogated by coxibs, which may explain the prothrombotic side-effects for this class of drugs. Furthermore, PPARδ agonists may be used therapeutically to suppress coxib-induced cardiovascular side effects

    Von Willebrand factor delays liver repair after acetaminophen-induced acute liver injury in mice

    Get PDF
    Background &amp; Aim: Acetaminophen (APAP)-induced acute liver failure is associated with substantial alterations in the hemostatic system. In mice, platelets accumulate in the liver after APAP overdose and appear to promote liver injury. Interestingly, patients with acute liver injury have highly elevated levels of the platelet-adhesive protein von Willebrand factor (VWF), but a mechanistic connection between VWF and progression of liver injury has not been established. We tested the hypothesis that VWF contributes directly to experimental APAP-induced acute liver injury. Methods: Wild-type mice and VWF-deficient (Vwf−/−) mice were given a hepatotoxic dose of APAP (300 mg/kg, i.p.) or vehicle (saline). VWF plasma levels were measured by ELISA, and liver necrosis or hepatocyte proliferation was measured by immunohistochemistry. Platelet and VWF deposition were measured by immunofluorescence. Results: In wild-type mice, VWF plasma levels, high molecular weight (HMW) VWF multimers, and VWF activity decreased 24 h after APAP challenge. These changes coupled to robust hepatic VWF and platelet deposition, although VWF deficiency had minimal effect on peak hepatic platelet accumulation or liver injury. VWF plasma levels were elevated 48 h after APAP challenge, but with relative reductions in HMW multimers and VWF activity. Whereas hepatic platelet aggregates persisted in livers of APAP-challenged wild-type mice, platelets were nearly absent in Vwf−/− mice 48 h after APAP challenge. The absence of platelet aggregates was linked to dramatically accelerated repair of the injured liver. Complementing observations in Vwf−/− mice, blocking VWF or the platelet integrin αIIbβ3 during development of injury significantly reduced hepatic platelet aggregation and accelerated liver repair in APAP-challenged wild-type mice. Conclusion: These studies are the first to suggest a mechanistic link between VWF, hepatic platelet accumulation, and liver repair. Targeting VWF might provide a novel therapeutic approach to improve repair of the APAP-injured liver. Lay summary: Patients with acute liver injury due to acetaminophen overdose have highly elevated levels of the platelet-adhesive protein von Willebrand factor. It is not known whether von Willebrand factor plays a direct role in the progression of acute liver injury. We discovered that von Willebrand factor delays repair of the acetaminophen-injured liver in mice and that targeting von Willebrand factor, even in mice with established liver injury, accelerates liver repair.</p

    Hepatocyte tissue factor contributes to the hypercoagulable state in a mouse model of chronic liver injury

    Get PDF
    Patients with chronic liver disease and cirrhosis have a dysregulated coagulation system and are prone to thrombosis. The basis for this hypercoagulable state is not completely understood. Tissue factor (TF) is the primary initiator of coagulation in vivo. Patients with cirrhosis have increased TF activity in white blood cells and circulating microparticles. The aim of our study was to determine the contribution of TF to the hypercoagulable state in a mouse model of chronic liver injury

    Comparison of TNFα to Lipopolysaccharide as an Inflammagen to Characterize the Idiosyncratic Hepatotoxicity Potential of Drugs: Trovafloxacin as an Example

    Get PDF
    Idiosyncratic drug reactions (IDRs) are poorly understood, unpredictable, and not detected in preclinical studies. Although the cause of these reactions is likely multi-factorial, one hypothesis is that an underlying inflammatory state lowers the tolerance to a xenobiotic. Previously used in an inflammation IDR model, bacterial lipopolysaccharide (LPS) is heterogeneous in nature, making development of standardized testing protocols difficult. Here, the use of rat tumor necrosis factor-α (TNFα) to replace LPS as an inflammatory stimulus was investigated. Sprague-Dawley rats were treated with separate preparations of LPS or TNFα, and hepatic transcriptomic effects were compared. TNFα showed enhanced consistency at the transcriptomic level compared to LPS. TNFα and LPS regulated similar biochemical pathways, although LPS was associated with more robust inflammatory signaling than TNFα. Rats were then codosed with TNFα and trovafloxacin (TVX), an IDR-associated drug, and evaluated by liver histopathology, clinical chemistry, and gene expression analysis. TNFα/TVX induced unique gene expression changes that clustered separately from TNFα/levofloxacin, a drug not associated with IDRs. TNFα/TVX cotreatment led to autoinduction of TNFα resulting in potentiation of underlying gene expression stress signals. Comparison of TNFα/TVX and LPS/TVX gene expression profiles revealed similarities in the regulation of biochemical pathways. In conclusion, TNFα could be used in lieu of LPS as an inflammatory stimulus in this model of IDRs

    Tissue factor contributes to neutrophil CD11b expression in alpha-naphthylisothiocyanate-treated mice

    Get PDF
    Cholestatic liver injury induced by alpha-naphthylisothiocyanate (ANIT) is provoked by injury to intrahepatic bile ducts and the progression of hepatic necrosis requires the procoagulant protein tissue factor (TF) and extrahepatic cells including neutrophils. Recent studies have shown that myeloid cell TF contributes to neutrophil activation. We tested the hypothesis that myeloid cell TF contributes to neutrophil activation in ANIT-treated mice. TF activity in liver homogenates increased significantly in TFflox/flox mice treated with ANIT, but not in TFflox/flox/LysMCre mice (TFΔMyeloid mice), which have reduced TF expression in monocytes/macrophages and neutrophils. Myeloid cell-specific TF deficiency did not alter expression of the chemokines KC or MIP-2, but reduced hepatic neutrophil accumulation in ANIT-treated mice at 48 hours as indicated by tissue myeloperoxidase (MPO) activity. Myeloid cell TF deficiency significantly reduced CD11b expression by blood neutrophils in ANIT-treated mice and this was associated with reduced plasma MPO protein levels, an index of neutrophil degranulation. However, myeloid cell-specific TF deficiency had no effect on ANIT-induced coagulation cascade activation. The increase in serum ALT and ALP activities in ANIT-treated mice was reduced by myeloid cell TF deficiency (p<0.05), but the myeloid cell TF deficiency did not reduce hepatic necrosis at 48 hours, as determined by histopathology and morphometry. The results suggest that myeloid cell TF contributes to neutrophil CD11b expression during cholestasis by a coagulation-independent pathway. However, the resultant reduction in neutrophil accumulation/activation is insufficient to substantially reduce ANIT hepatotoxicity, suggesting that myeloid cell TF is only one of many factors modulating hepatic necrosis during cholestasis
    • …
    corecore