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Thrombin generation is increased in patients with
nonalcoholic fatty liver disease (NAFLD) and in
mouse models of diet-induced obesity. Deficiency
in the thrombin receptor protease activated recep-
tor-1 reduces hepatic inflammation and steatosis in
mice fed a Western diet. However, it is currently
unclear whether thrombin inhibitors can modify
the pathogenesis of established NAFLD. We tested
the hypothesis that thrombin inhibition could re-
verse hepatic steatosis and inflammation in mice
with established diet-induced NAFLD. Low-density
lipoprotein receptor–deficient LDLr�/� mice were
fed a control diet or a Western diet for 19 weeks.
Mice were given the direct thrombin inhibitor ar-
gatroban �15 mg/kg/day or its vehicle via a min-
iosmotic pump for the final 4 weeks of the study.
Argatroban administration significantly reduced
hepatic proinflammatory cytokine expression and
reduced macrophage and neutrophil accumulation
in livers of mice fed a Western diet. Argatroban did
not significantly impact hepatic steatosis, as indi-
cated by histopathology, Oil Red O staining, and
hepatic triglyceride levels. Argatroban reduced se-
rum triglyceride and cholesterol levels in mice fed a
Western diet. Argatroban reduced both �-smooth
muscle actin expression and Type 1 collagen mRNA
levels in livers of mice fed a Western diet, indicating
reduced activation of hepatic stellate cells. This
study indicates that therapeutic intervention with a
thrombin inhibitor attenuates hepatic inflamma-
tion and several profibrogenic changes in mice fed
a Western diet. (Am J Pathol 2012, 181:1287–1295; http://
dx.doi.org/10.1016/j.ajpath.2012.06.011)
More than 70% of patients with abdominal obesity de-
velop concurrent nonalcoholic fatty liver disease
(NAFLD).1 NAFLD, the hepatic manifestation of meta-
bolic syndrome, is characterized by excess accumula-
tion of lipids in the liver (ie, hepatic steatosis)2,3 and
affects approximately 25% of the Western population.4

Steatosis accompanied by marked histological inflamma-
tion is termed nonalcoholic steatohepatitis (NASH), which
is the most severe form of NAFLD and a major cause of
liver fibrosis and cirrhosis.5,6 Progression from simple
steatosis to NASH is indicative of a poor clinical outcome
and currently has no effective pharmacological treatment
options. In addition, both obesity and NAFLD are asso-
ciated with an increased risk of developing type 2 diabe-
tes mellitus7 and cardiovascular disease.8,9 Therefore,
there is an immediate need to identify novel pharmaco-
logical approaches to treat NAFLD.

A significant commonality among obesity-related dis-
eases is inflammation. Obesity and hepatic steatosis are
associated with increased expression of many inflamma-
tory mediators in the liver.10 The expression of several of
these mediators, particularly those involved in leukocyte
recruitment, is further increased in patients with NASH.10

Several compelling studies have demonstrated that in-
flammatory chemokines such as monocyte chemoattrac-
tant protein-1 (MCP-1) and the subsequent recruitment
and activation of hepatic macrophages (ie, Kupffer cells)
are essential components of NAFLD pathogenesis.11–14

A systemic proinflammatory state, driven in part by he-
patic inflammation, is associated with an increased risk of
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type 2 diabetes15,16 and adverse cardiovascular out-
comes.17 In particular, systemic levels of high sensitivity
C-reactive protein (hs-CRP), a biomarker of risk for acute
cardiovascular events,18 are primarily dictated by the
proinflammatory environment in the liver. Indeed, hs-CRP
levels are independently associated with hepatic steato-
sis in patients with metabolic syndrome.8 These studies
indicate that increased hepatic inflammation is a focal
point of multiple diseases stemming from the metabolic
syndrome. Of importance, the molecular triggers of he-
patic inflammation in metabolic diseases such as obesity
are not completely understood. To this end, understand-
ing the cellular and molecular pathways coordinating he-
patic inflammation in metabolic disease could lead to the
development of clinical therapies that target inflammation
as an underlying cause of multiple interrelated diseases.

Because the liver is the primary site of coagulation
factor synthesis, liver diseases are often accompanied by
a rebalancing of the hemostatic profile.19 Indeed, ab-
dominal obesity, metabolic syndrome, and NAFLD are
each associated with activation of the blood coagulation
cascade, including increased generation of the serine
protease thrombin.20–23 Moreover, thrombin generation
is increased in mouse models of diet-induced obesity
and hypercholesterolemia.24,25 Previous studies have
shown that the induction of tissue factor on monocytes is
essential for thrombin generation in mice fed a Western
diet.26 Various hepatic manifestations of diet-induced
obesity, including hepatic steatosis, are reduced in tissue
factor–deficient mice.24 Moreover, we found previously
that mice lacking a thrombin receptor, protease activated
receptor-1 (PAR-1), did not develop hepatic steatosis
when fed a Western diet.24 Although compelling, these
genetic approaches do not directly address the question of
whether intervention with pharmacological agents, perhaps
anticoagulants, can reduce established liver disease. In-
deed, it is currently unclear whether pharmacological inhi-
bition of thrombin alters the course of established diet-in-
duced fatty liver disease in mice.

To this end, we tested the hypothesis that pharmaco-
logical inhibition of thrombin could therapeutically re-
verse diet-induced hepatic inflammation and steatosis in
hypercholesterolemic low density lipoprotein receptor–
deficient (LDLr�/�) mice.

Materials and Methods

Mice and Experimental Diets

Six-week-old male LDLr�/� mice on a C57Bl/6 background
purchased from the Jackson Laboratory (Bar Harbor, ME)
were fed a control diet (AIN-93M, 10% kcal from fat; Dyets,
Bethlehem, PA) or a Western diet (Diet #100244, 40% kcal
from milk fat; Dyets) ad libitum for 15 weeks before implan-
tation of a subcutaneous miniosmotic pump (see below).
Mice fed each diet were then stratified to receive either
vehicle or argatroban such that the body weights of each
group of mice at the time of pump implantation were similar.
Average food intake was measured weekly for each cage of

mice, and mice were weighed weekly. All studies were
approved by the Animal Care and Use Committee of the
University of Kansas Medical Center and complied with
National Institutes of Health guidelines.

Pump Preparation and Implantation

Alzet miniosmotic pumps (Model 2004, flow rate 0.25
�L/hour; Alzet, Cupertino, CA) were filled with vehicle or
argatroban (AKScientific, Union City, CA) solution. Previ-
ous studies have demonstrated effective administration
of argatroban to rodents via a micro-osmotic pump.27,28

The argatroban vehicle consisted of 10% glacial acetic
acid, 2 mmol/L sodium acetate, 20% polyethylene glycol
400, and 10% propylene glycol in sterile water for injec-
tion. This solution is stated to stabilize argatroban for at
least 4 weeks at 37°C.29 Argatroban was dissolved in the
vehicle solution at 100 mg/mL, yielding a daily dose of
approximately 15 mg/kg/day, a dose similar to previous
studies using argatroban administered to rodents via a
micro-osmotic pump.27 Pumps were filled in a sterile
environment according to the manufacturer’s protocol.
Mice were anesthetized with 3% isoflurane and given an
intraperitoneal injection of Buprenex (buprenorphine HCl,
1 mg/kg; Reckitt Benckiser Pharmaceuticals, Richmond,
VA) before surgeries. Pumps were implanted subcutane-
ously slightly posterior to the scapulae, and the incision
was closed with Syneture 4–0 chromic gut sutures
(Roboz, Gaithersburg, MD). Sutures and incision sites
were monitored daily. Mice were treated with topical zinc
oxide for skin irritation as required and recommended by
a clinical veterinarian. Mice were allowed ad libitum ac-
cess to either control diet or Western diet (as specified
above) for 28 days after pump implantation.

Sample Collection

Mice were fasted overnight before sample collection. Un-
der isoflurane anesthesia, blood was collected from the
caudal vena cava into sodium citrate (final concentration,
0.38%) for the collection of plasma and into an empty
syringe for the collection of serum. Sections of liver from
the left lateral lobe were fixed in 10% neutral-buffered
formalin for 48 hours and embedded in paraffin. The right
medial lobe was affixed to a cork with optimal cutting
temperature compound (Thermo Fisher Scientific, Wal-
tham, MA) and immersed for approximately 3 minutes in
liquid nitrogen–chilled isopentane. The remaining liver
was snap frozen in liquid nitrogen.

Histopathology, Clinical Chemistry, and
Determination of Lipid Levels in Liver

Paraffin-embedded livers were sectioned at 5 �m and
stained with hematoxylin and eosin (H&E). Livers were
scored by a board-certified pathologist (W.C.) for per-
cent steatosis and the presence of inflammatory foci.
The total number of foci of portal inflammation and
lobular inflammation was counted for the entire section
under �200 magnification. The raw score of inflamma-

tory foci per �200 field was calculated by dividing the
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total number of inflammatory foci by the total number of
fields. Formalin-fixed sections were also stained for
collagen using a Chromaview Gomori Trichrome stain-
ing kit (Thermo Fisher Scientific) as described by the
manufacturer’s protocol. Oil Red O staining was per-
formed as previously described.30 Quantification of
collagen staining (blue) and Oil Red O staining was
performed using Metamorph software (Molecular De-
vices, Sunnyvale, CA) and ImageJ version 1.45 (NIH,
Bethesda, MD). Plasma thrombin-antithrombin levels
were determined using a commercially available en-
zyme-linked immunosorbent assay (ELISA) kit (Sie-
mens Healthcare Diagnostics, Tarrytown, NY). Lipids
were extracted from 100 mg of snap-frozen liver as
described,31 and hepatic and serum triglyceride and
cholesterol levels were determined using commercially
available reagents (Pointe Scientific, Canton, MI).
Thrombin time was determined by clotting 50 �L of
mouse plasma with 50 �L of Dade thrombin reagent
(6.25 U/mL; Siemens Healthcare Diagnostics) using a
Start4 coagulation analyzer (Diagnostica Stago, Par-
sippany, NJ).

RNA Isolation, cDNA Synthesis, and
Real-Time PCR

Total RNA was isolated from approximately 100 mg of
snap-frozen liver using TRI Reagent (Molecular Research
Center, Cincinnati, OH) per the manufacturer’s protocol.
One microgram of RNA was used for the synthesis of
cDNA using a High-Capacity cDNA Reverse Transcrip-
tion kit (Applied Biosystems, Foster City, CA) and C1000
thermal cycler (Bio-Rad Laboratories, Hercules, CA).
Levels of MCP-1, CD68, F4/80, intercellular adhesion
molecule-1 (ICAM-1), macrophage inflammatory pro-
tein-2 (MIP-2), type 1 collagen (Col1a1), tissue inhibitor of
metalloproteinases-1 (TIMP-1), transforming growth fac-
tor-�1 (TGF�1), and 18S mRNA were determined using
either TaqMan gene expression assays (Applied Biosys-
tems) or PrimeTime qPCR Assays [Integrated DNA Tech-
nologies (IDT), Coralville, IA], iTaq Supermix with ROX
(Bio-Rad), and a StepOnePlus thermal cycler (Applied
Biosystems). Mouse MIP-2 (NM_009140) primer se-
quences were 5=-GAAGTCATAGCCACTCTCAAGG-3= (for-
ward primer), 5=-CTTCCGTTGAGGGACAGC-3= (reverse
primer), and 5=-/56-FAM/TCCTTTCCA/ZEN/GGTCAGTTAGC-
CTTGC/3IABkFQ/-3= (probe). Mouse Col1a1 (NM_007742)
primer sequences were 5=-CATAAAGGGTCATGGTGGCT-3=
(forward primer), 5=-TTGAGTCCGTCTTTGCCAG-3= (reverse
primer), and 5=-/56-FAM/TGGTGAACA/ZEN/AGGCCC-
CTCTGG/3IABkGQ/-3= (probe). 18S (NM_003286) primer
sequences were 5=-CTGTAGCCCTGTACTTCATCG-3=
(forward primer), 5=-CTACCACATATTCCTGACCATCC-3= (re-
verse primer), and 5=-/56-FAM/CCTTCCTCC/ZEN/TTTTCATT-
GCCTGCTCT/3IABkFQ/-3= (probe). MIP-2, Col1a1, and 18S
primers and probes were purchased from IDT. All other
gene expression assays were purchased from Applied Bio-
systems (MCP-1, Assay ID Mm00441242_m1; CD68, Assay
ID Mm00839636_g1; F4/80, Assay ID Mm00802530_m1;

ICAM-1, Assay ID Mm00516023_m1; TIMP-1, Assay ID
Mm00441818_m1; and TGF�1, Assay ID Mm00441724_m1).
The expression of each gene was adjusted relative to 18S
expression levels, and the relative expression level was
determined using the comparative Ct method.

Macrophage and Neutrophil Staining

Frozen livers were sectioned at 8 �m for macrophage
staining. Macrophages were identified in liver using
CD68 and F4/80 antibodies as previously described.31

Paraffin-embedded livers were sectioned at 5 �m and
stained for neutrophils by the Michigan State University
Investigative HistoPathology Laboratory using a rabbit
anti-neutrophil polyclonal antibody. The total number of
neutrophils and the number of neutrophil foci (defined as
three or more adjacent neutrophils) per 10 randomly se-
lected �200 fields were determined.

�-Smooth Muscle Actin Staining

Paraffin-embedded livers were sectioned at 5 �m, depar-
affinized, and then boiled in citrate buffer. Sections were
blocked with 5% goat serum and stained overnight with
rabbit anti–�-smooth muscle actin (�SMA) antibody (Ab-
cam, Cambridge, MA). Tissues were washed with Tris-
buffered saline–Tween and stained with biotinylated anti-
rabbit secondary antibody (Jackson ImmunoResearch,
West Grove, PA) for 30 minutes. ABC reagent (Vector
Laboratories, Burlingame, CA) was added for 30 minutes,
and tissues were then incubated with ImmPACT DAB (Vec-
tor Laboratories) for 1 minute. Sections were counterstained
with Gill’s hematoxylin (Ricca Chemical Company, Arling-
ton, TX) and Scott’s Bluing Reagent (Ricca Chemical Com-
pany). Quantification of �SMA staining was performed us-
ing Metamorph software (Molecular Devices).

MCP-1 ELISA

Total protein was isolated from approximately 100 mg of
snap-frozen liver using PBS containing 0.1% Triton X-100
and Halt protease and phosphatase inhibitor cocktail
(Thermo Fisher Scientific). Samples were rotated for 30
minutes at 4°C and then subjected to centrifugation at
12,000 � g for 15 minutes at 4°C. Protein concentrations
were determined using a DC Protein Assay (Bio-Rad). The
concentrations of MCP-1 in liver and plasma were deter-
mined using a commercially available ELISA kit (DuoSet
ELISA; R&D Systems, Minneapolis, MN).

Statistics

Statistics were performed using SigmaPlot 11.0 software
(Systat Software, San Jose, CA). Comparison of two
groups was performed using Student’s t-test. Compari-
son of three or more groups was performed using two-
way analysis of variance followed by the Student-
Newman-Keuls post hoc test for multiple comparisons.
Data are expressed as mean � SEM. The criterion for

statistical significance was P � 0.05.
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Results

Effect of Argatroban Treatment on Weight Gain
and Thrombin Generation in LDLr�/� Mice Fed
a Western Diet

In agreement with our previous studies,24 plasma throm-
bin-antithrombin levels, a stable biomarker of thrombin
generation, significantly increased in mice fed a Western
diet compared to mice fed a control diet (data not
shown). To confirm thrombin inhibition by argatroban,
plasma thrombin time was determined. Argatroban treat-
ment significantly prolonged thrombin time (43.3 � 6.2
seconds) compared to mice treated with vehicle (27.9 �
1.2 seconds) (P � 0.05). These studies suggest that
thrombin generation is increased in mice fed a Western
diet and that thrombin activity was reduced in mice
treated with argatroban. Mice fed a control diet gained
42.1 � 2.7% body weight, and mice fed a Western diet
gained 97.1 � 6.7% body weight in the 15 weeks before
pump implantation (P � 0.05). Following pump implanta-
tion, argatroban treatment did not affect weight gain in
mice fed either diet (data not shown). In addition, arga-
troban treatment did not significantly affect food intake
(data not shown). No overt bleeding events were noted in
mice treated with argatroban.
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Figure 1. Effect of thrombin inhibition on macrophage accumulation in
livers of mice fed a Western diet. LDLr�/� mice were fed a control diet or a
Western diet for 19 weeks and were treated with vehicle or argatroban (15
mg/kg/day) via a miniosmotic pump for the final 4 weeks of the study.
Representative photomicrographs of (A–D) CD68 and F4/80-stained (brown)
liver sections in mice with (A and C) vehicle pumps and (B and D) argatro-
ban pumps fed (A and B) control diet and (C and D) Western diet. Original
magnification, �200. Hepatic levels of (E) CD68 mRNA and (F) F4/80 mRNA
were determined by real-time PCR. Data are expressed as mean � SEM and
as a fold change versus mice fed control diet with a vehicle pump. n � 5 to

7 mice per group. *P � 0.05 versus mice fed the control diet with the same
drug treatment. †P � 0.05 versus mice fed the same diet with a vehicle pump.
Effect of Argatroban Treatment on Inflammation
in Livers of LDLr�/� Mice Fed a Western Diet

Argatroban administration significantly reduced hepatic
macrophage accumulation in mice fed a Western diet
(Figure 1, A–D). In agreement, hepatic expression of the
mRNAs encoding CD68 and F4/80, two macrophage-
selective genes, was significantly reduced by argatroban
administration in mice fed a Western diet (Figure 1, E and
F). MCP-1 is an inflammatory mediator that contributes to
hepatic macrophage accumulation and the development
of steatosis in mice fed a Western diet.11,12,32–34 Com-
pared to LDLr�/� mice fed a control diet, hepatic MCP-1
mRNA, as well as hepatic and plasma MCP-1 protein
levels, was increased in LDLr�/� mice fed a Western diet
(Figure 2, A–C). Administration of argatroban for 4 weeks
significantly reduced MCP-1 mRNA and protein expres-
sion in mice fed a Western diet (Figure 2, A–C).

In addition to accumulation of macrophages, hepatic
neutrophil accumulation and activation has been shown
to mark the transition of simple steatosis to NASH.35

Hepatic neutrophil accumulation increased in livers of
mice fed a Western diet, and argatroban treatment de-
creased neutrophil accumulation and clustering (Figure
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Figure 2. Effect of thrombin inhibition on MCP-1 induction in mice fed a
Western diet. LDLr�/� mice were fed a control diet or a Western diet for 19
weeks and were treated with vehicle or argatroban (15 mg/kg/day) via a
miniosmotic pump for the final 4 weeks of the study. A: Hepatic levels of
MCP-1 mRNA were determined by real-time PCR. Data are expressed as
mean � SEM and as a fold change versus mice fed control diet with a vehicle
pump. B: Hepatic levels and (C) plasma levels of MCP-1 protein were
determined by ELISA. Data are expressed as mean � SEM. n � 5 to 7 mice
per group. *P � 0.05 versus mice fed the control diet with the same drug
treatment. †P � 0.05 versus mice fed the same diet with a vehicle pump.
3, A–F). Similarly, inflammatory foci were decreased in
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Western diet–fed mice after argatroban administration as
scored by a pathologist (control diet, vehicle pump �
0.09 � 0.04 foci/�200 field; control diet, argatroban
pump � 0.05 � 0.02 foci/�200 field; Western diet, vehi-
cle pump � 1.69 � 0.32 foci/�200 field; Western diet,
argatroban pump � 0.70 � 0.15 foci/�200 field, P � 0.05
compared to Western diet, vehicle pump). The expres-
sion of mRNAs encoding ICAM-1 and MIP-2, mediators
contributing to neutrophil accumulation,36,37 increased in
livers of mice fed a Western diet, and the expression of
each gene was reduced by argatroban administration
(Figure 4, A and B), although the reduction in MIP-2 expres-
sion did not achieve statistical significance (P � 0.07).

Effect of Argatroban Treatment on Serum Lipids
and Hepatic Steatosis in LDLr�/� Mice Fed a
Western Diet

In agreement with a previous study,38 microvesicular ste-
atosis was evident in livers of LDLr�/� mice fed a control
diet (Figure 5B). Compared to LDLr�/� mice fed a control
diet, marked macrovesicular steatosis indicated by his-
topathology, neutral lipid staining (Oil Red O), and in-
creased hepatic triglyceride levels was evident in livers of
mice fed a Western diet (Figures 5 and 6A). Hepatic
triglyceride levels increased in mice fed a Western diet,
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Figure 3. Effect of thrombin inhibition on neutrophil accumulation in livers
of mice fed a Western diet. LDLr�/� mice were fed a control diet or a Western
diet for 19 weeks and were treated with vehicle or argatroban (15 mg/kg/
day) via a miniosmotic pump for the final 4 weeks of the study. Represen-
tative photomicrographs of (A–D) liver sections stained for neutrophils in
mice with (A and C) vehicle pumps and (B and D) argatroban pumps fed (A
and B) control diet and (C and D) Western diet, and the quantification of (E)
total hepatic neutrophil (PMN) accumulation, and (F) neutrophil foci as
described in Materials and Methods. Original magnification: �200 (A–D),
�800 (inset, C and D). *P � 0.05 versus mice fed the control diet with the
same drug treatment. †P � 0.05 versus from mice fed the same diet with a
vehicle pump. HPF, high-power field.
although this increase did not achieve statistical signifi-
cance in the argatroban group (Figure 6A, P � 0.1).
Argatroban did not significantly affect hepatic steatosis
elicited by a high-fat diet, as indicated by evaluation of
liver histopathology, Oil Red O staining for neutral lipid,
and quantification of hepatic triglycerides (Figures 5 and
6A). Hepatic cholesterol levels were increased similarly in
both vehicle-treated and argatroban-treated mice fed a
Western diet (Figure 6B). Serum triglyceride and choles-
terol levels were significantly increased in LDLr�/� mice
fed a Western diet compared to mice fed a control diet
(Figure 6, C and D). Interestingly, 4 weeks of argatroban
treatment was sufficient to completely reverse the in-
crease in serum triglycerides and significantly reduce
total cholesterol levels in serum of mice fed a Western
diet (Figure 6, C and D).

Effect of Argatroban Treatment on Profibrogenic
Changes in Livers of LDLr�/� Mice Fed a
Western Diet

Compared to wild-type C57Bl/6 mice, LDLr�/� mice are
more susceptible to the development of NASH, including
the potential for increased progression to fibrosis.39 At
this relatively early time in the disease course, trichrome
staining did not reveal a significant increase in collagen
deposition in livers of mice fed a Western diet (Figure 7I).
To determine whether argatroban affected any early pro-
fibrogenic changes in livers of mice fed a Western diet,
we evaluated expression of mRNAs encoding several
profibrogenic genes, as well as hepatic �-SMA protein
expression. Mice fed a Western diet exhibited an in-
crease in hepatic �-smooth muscle actin protein expres-
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Figure 4. Effect of thrombin inhibition on ICAM-1 and MIP-2 mRNA expres-
sion in livers of mice fed a Western diet. LDLr�/� mice were fed a control diet
or a Western diet for 19 weeks and were treated with vehicle or argatroban
(15 mg/kg/day) via a miniosmotic pump for the final 4 weeks of the study.
Hepatic levels of (A) ICAM-1 mRNA and (B) MIP-2 mRNA were determined
by real-time PCR. Data are expressed as mean � SEM and as a fold change
versus mice fed control diet with a vehicle pump. n � 5 to 7 mice per group.

*P � 0.05 versus mice fed the control diet with the same drug treatment.
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1292 Kassel at al
AJP October 2012, Vol. 181, No. 4
sion, and this was decreased in mice treated with arga-
troban (Figure 7, F, H, and J). The expression of Col1a1,
TIMP-1, and TGF�1 mRNA was significantly increased in
livers of LDLr�/� mice fed a Western diet compared to
mice fed a control diet (Figure 8). Interestingly, argatro-
ban treatment substantially decreased Col1a1 and
TIMP-1 mRNA expression (Figure 8, A and B), but not
TGF�1 mRNA expression (Figure 8C). Overall, the data
suggest that argatroban reduces several markers of pro-
fibrogenic changes in livers of mice fed a Western diet.

Discussion

Altered synthesis of coagulation factors by the fatty liver
is associated with a procoagulant state in patients with
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Figure 5. Effect of thrombin inhibition on lipid accumulation in mice fed a
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D, G, and H) argatroban pumps fed (A–D) a control diet and (E–H) a Western
diet. Original magnification, �200. I: Quantification of Oil Red O staining ex-
pressed relative to mice fed control diet given vehicle. n � 5 to 7 mice per group.
*P � 0.05 versus mice fed the control diet with the same drug treatment.
metabolic syndrome.20,40,41 However, few studies have
addressed the possibility that the procoagulant state as-
sociated with metabolic syndrome is a cause, rather than
a consequence, of NAFLD. In this proof-of-principle
study, we investigated the possibility that treatment with a
direct thrombin inhibitor could be a potential therapeutic
strategy to reduce inflammation and hepatic steatosis in
mice fed a high-fat diet. We found that therapeutic ad-
ministration of the thrombin inhibitor argatroban was suf-
ficient to blunt hepatic inflammation, serum lipid levels,
and profibrogenic gene expression in mice fed a Western
diet. Data from this and previous studies in our laboratory
indicate that the coagulation cascade and its down-
stream signaling pathways are critical triggers in the de-
velopment of NAFLD,24 with thrombin being a central
regulator of multiple components of the disease.

LDLr�/� mice fed a high-fat diet develop more ad-
vanced hepatic inflammation than do C57Bl/6 mice.38,42

Similarly, in some patients with fatty liver disease, simple
steatosis can progress to NASH, which is defined histo-
pathologically by more severe inflammation combined
with ballooning degeneration of hepatocytes.5 LDLr�/�

mice also manifest marked hypercholesterolemia and
atherosclerosis when fed a high-fat diet, features not
present in wild-type C57Bl/6 mice. Utilization of LDLr�/�

mice allows for the potential exploration into the mecha-
nisms linking hepatic inflammation to these other disease
processes. A central component of both NAFLD and
NASH is inflammation. Patients with NAFLD have a low
level of chronic inflammatory mediator expression.10 In
particular, expression of the chemokine MCP-1 is in-
volved in the recruitment of macrophages to the liver, a
process essential to the development of steatosis in
mouse models.43 In addition to macrophages, hepatic
neutrophil accumulation is evident in livers of patients
with NAFLD/NASH, particularly surrounding steatotic
hepatocytes.35,44 Interestingly, the infiltration of neutrophils
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Figure 6. Effect of thrombin inhibition on liver and serum triglyceride and
cholesterol levels. LDLr�/� mice were fed a control diet or a Western diet for 19
weeks and were treated with vehicle or argatroban (15 mg/kg/day) via a min-
iosmotic pump for the final 4 weeks of the study. A: Hepatic triglyceride levels,
(B) hepatic cholesterol levels, (C) serum triglyceride levels, and (D) serum
cholesterol levels were determined. Data are expressed as mean � SEM. n � 5

to 7 mice per group. *P � 0.05 versus mice fed the control diet with the same
drug treatment. †P � 0.05 versus mice fed the same diet with a vehicle pump.
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into the fatty liver correlates to disease severity and may
contribute to the progression to NASH.35 Therapeutic ad-
ministration of the thrombin inhibitor argatroban reduced
multiple components of inflammation, including decreased
hepatic accumulation of macrophages and neutrophils.

Deficiencies in select inflammatory mediators includ-
ing MCP-1 and tumor necrosis factor-� (TNF�) signifi-
cantly reduce hepatic steatosis in mice fed a high-fat
diet.12,34 Exaggerated expression of these mediators
likely contributes to the transition to NASH in patients with
fatty liver disease.45 Of importance, within only 4 weeks,
argatroban significantly reduced MCP-1 mRNA and pro-
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Figure 7. Effect of thrombin inhibition on collagen deposition and �SMA
expression in mice fed a Western diet. LDLr�/� mice were fed a control diet
or a Western diet for 19 weeks and were treated with vehicle or argatroban
(15 mg/kg/day) via a miniosmotic pump for the final 4 weeks of the study.
A, C, E, and G: Representative photomicrographs of Trichrome-stained liver
sections in mice with (A and E) vehicle pumps and (C and G) argatroban
pumps fed (A and C) a control diet and (E and G) a Western diet. Original
magnification, �200. B, D, F, and H: Representative photomicrographs of
�-SMA-stained liver sections in mice with (B and F) vehicle pumps and (D
and H) argatroban pumps fed (B and D) a control diet and (F and H) a
Western diet. Original magnification, �200. Quantification of collagen (blue)
staining (I) and �SMA staining (J) expressed relative to mice fed control diet
given vehicle. n � 5 to 7 mice per group. *P � 0.05 versus mice fed the
control diet with the same drug treatment. †P � 0.05 versus mice fed the same
diet with a vehicle pump.
tein expression, and reduced hepatic TNF� mRNA ex-
pression (data not shown). This duration of treatment with
argatroban was not sufficient to reduce hepatic steatosis.
By contrast, we have shown previously that PAR-1�/�

mice, which have a significant defect in thrombin signal-
ing, do not develop hepatic steatosis when fed a high-fat
diet.46 This suggests that the reduction in hepatic inflam-
mation by argatroban in the present study was not suffi-
cient to correct hepatic steatosis. This may relate to the
relatively short duration of argatroban administration (ie,
4 weeks), and a more prolonged administration of arga-
troban could lead to a reduction in steatosis.

Beneficial effects of reducing hepatic inflammation are
likely to extend beyond limiting the transition to NASH.
Hepatic inflammation in patients with NAFLD also in-
creases the synthesis of hs-CRP, which is an important
indicator of increased risk of acute cardiovascular events
in patients.8 The mouse homologue of hs-CRP is the
acute-phase protein serum amyloid A.47 Of interest, we
found that argatroban dramatically suppressed expres-
sion of serum amyloid A1 mRNA in livers of mice fed a

A

ol
1a

1 
m

R
N

A

2

4

6

8
control
argatroban

*

#v†

vehicle
argatroban

C
o

0

2

Control
Diet

Western
Diet

B

M
P-

1 
m

R
N

A

10

20

30

40
control
argatroban

*

*#†

vehicle
argatroban

TI
M

0

10

Control
Diet

Western
Diet

C

G
F β

1 
m

R
N

A

1.0

1.5

2.0

2.5
control
argatroban *

*

vehicle
argatroban

TG

0.0

0.5

Control
Diet

Western
Diet

Figure 8. Effect of thrombin inhibition on profibrogenic genes in livers of
mice fed a Western diet. LDLr�/� mice were fed a control diet or a Western
diet for 19 weeks and were treated with vehicle or argatroban (15 mg/kg/
day) via a miniosmotic pump for the final 4 weeks of the study. Hepatic levels
of (A) Col1a1 mRNA, (B) TIMP-1 mRNA, and (C) TGF�1 mRNA were deter-
mined by real-time PCR. Data are expressed as mean � SEM and as a fold
change versus mice fed a control diet with a vehicle pump. n � 5 to 7 mice

per group. *P � 0.05 versus mice fed the control diet with the same drug
treatment. †P � 0.05 versus mice fed the same diet with a vehicle pump.
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Western diet (data not shown). Moreover, other risk fac-
tors for the development of atherosclerosis and other
cardiovascular diseases, including increased plasma
MCP-1 expression and hypercholesterolemia and hyper-
triglyceridemia,48–50 were all reduced by argatroban ad-
ministration in mice fed a Western diet. The mechanism of
reduction of plasma lipid levels by thrombin inhibition is not
known, but may relate to the correction of hepatic inflam-
mation and restoration of hepatic lipid metabolism. Viewed
in the context of previous studies identifying beneficial ef-
fects of thrombin and FXa inhibitors in preclinical models of
atherosclerosis,51 these data suggest that thrombin inhibi-
tion could be beneficial for the treatment of atherosclerosis.

In a subset of patients with NASH, chronic liver injury
and inflammation promotes excess deposition of extra-
cellular matrix, particularly collagens, which can compro-
mise liver function and increase the risk of developing
fibrosis and cirrhosis. Indeed, NAFLD is associated with
an increased incidence of cirrhosis and hepatocellular
carcinoma in obese and diabetic patients.52 Collagen
deposition is evident in mice that have been fed a high-fat
diet for longer than 6 months or in mice that have been
fed a high-fat, high-cholesterol diet.53,54 In the present
study, we did not observe a significant increase in colla-
gen deposition in livers of mice fed a Western diet. How-
ever, it is worth noting that thrombin activation of PAR-1
has been shown to elicit profibrogenic changes in he-
patic stellate cells,55 which are responsible for liver fibro-
sis in fatty liver disease.56 We found that argatroban
administration concurrently reduced the expression of
�-SMA protein, a biomarker of stellate cell activation, and
the expression of two profibrogenic genes, type 1 colla-
gen and TIMP-1, in livers of LDLr�/� mice fed a Western
diet. Argatroban administration did not significantly re-
duce TGF-�1 mRNA expression, indicating that thrombin
inhibition did not universally attenuate all profibrogenic
changes in this model. These studies suggest that treat-
ment with a thrombin inhibitor could reduce the risk of
developing fibrosis in patients with NAFLD by preventing
early hepatic stellate cell activation.

These studies suggest that thrombin regulates multiple
components of fatty liver disease, including inflammation,
steatosis, and fibrosis. Thrombin inhibition with argatro-
ban significantly reduced multiple facets of hepatic in-
flammation in LDLr�/� mice fed a Western diet, including
decreasing macrophage and neutrophil accumulation,
and decreasing chemokine expression. Argatroban treat-
ment also significantly reduced serum triglyceride and
cholesterol levels. In addition, argatroban significantly
decreased profibrogenic gene expression and �SMA
protein expression in the livers of LDLr�/� mice fed a
Western diet. As the indications for anticoagulation in-
crease, novel orally bioavailable direct inhibitors of
thrombin (ie, dabigatran) and FXa (ie, apixaban, rivaroxa-
ban)57 could represent a therapeutic approach to reduce
systemic and hepatic inflammation in patients with obe-
sity and metabolic disease. As with the use of anticoag-
ulants in any disease, in-depth clinical evaluation of effi-
cacy balanced with potential increased risk of bleeding
would be required. Continued investigation of the mech-

anism whereby thrombin promotes hepatic inflammation
may ultimately lead to therapeutic strategies to limit he-
patic inflammation without affecting normal hemostasis.
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