108 research outputs found

    A QM/MM equation-of-motion coupled-cluster approach for predicting semiconductor color-center structure and emission frequencies

    Get PDF
    Valence excitation spectra are computed for all deep-center silicon-vacancy defect types in 3C, 4H, and 6H silicon carbide (SiC) and comparisons are made with literature photoluminescence measurements. Nuclear geometries surrounding the defect centers are optimized within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substitutional chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement in all cases considered.Comment: 13 pages, 4 figures, 6 tables, 5 equations, 100 reference

    The Lowest-Energy Isomer of C2Si2H4 Is a Bridged Ring: Reinterpretation of the Spectroscopic Data Based on DFT and Coupled-Cluster Calculations

    Get PDF
    The lowest-energy isomer of C2Si2H4 is determined by high-accuracy ab initio calculations to be the bridged four-membered ring 1,2-didehydro-1,3-disilabicyclo[1.1.0]butane (1), contrary to prior theoretical and experimental studies favoring the three-member ring silylsilacyclopropenylidene (2). These and eight other low-lying minima on the potential energy surface are characterized and ordered by energy using the CCSD(T) method with complete basis set extrapolation, and the resulting benchmark-quality set of relative isomer energies is used to evaluate the performance of several comparatively inexpensive approaches based on many-body perturbation theory and density functional theory (DFT). Double-hybrid DFT methods are found to provide an exceptional balance of accuracy and efficiency for energy-ordering isomers. Free energy profiles are developed to reason the relatively large abundance of isomer 2 observed in previous measurements. Infrared spectra and photolysis reaction mechanisms are modeled for isomers 1 and 2, providing additional insight about previously reported spectra and photoisomerization channels

    Semiconductor Color-center Structure and Excitation Spectra: Equation-of-motion Coupled-cluster Description of Vacancy and Transition-metal Defect Photoluminescence

    Get PDF
    Valence excitation spectra are computed for deep-center silicon-vacancy defects in 3C, 4H, and 6H silicon carbide (SiC), and comparisons are made with literature photoluminescence measurements. Optimizations of nuclear geometries surrounding the defect centers are performed within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substituted chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement for all cases considered. Abstract ©2018 American Physical Societ

    Acoustic Survey of a 3/8-Scale Automotive Wind Tunnel

    Get PDF
    An acoustic survey that consists of insertion loss and flow noise measurements was conducted at key locations around the circuit of a 3/8-scale automotive acoustic wind tunnel. Descriptions of the test, the instrumentation, and the wind tunnel facility are included in the current report, along with data obtained in the test in the form of 1/3-octave-band insertion loss and narrowband flow noise spectral data

    Does Atrazine Influence Larval Development and Sexual Differentiation in Xenopus laevis?

    Get PDF
    Debate and controversy exists concerning the potential for the herbicide atrazine to cause gonadal malformations in developing Xenopus laevis. Following review of the existing literature the U.S. Environmental Protection Agency required a rigorous investigation conducted under standardized procedures. X. laevis tadpoles were exposed to atrazine at concentrations of 0.01, 0.1, 1, 25, or 100 μg/l from day 8 postfertilization (dpf) until completion of metamorphosis or dpf 83, whichever came first. Nearly identical experiments were performed in two independent laboratories: experiment 1 at Wildlife International, Ltd. and experiment 2 at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB). Both experiments employed optimized animal husbandry procedures and environmental conditions in validated flow-through exposure systems. The two experiments demonstrated consistent survival, growth, and development of X. laevis tadpoles, and all measured parameters were within the expected ranges and were comparable in negative control and atrazine-treated groups. Atrazine, at concentrations up to 100 μg/l, had no effect in either experiment on the percentage of males or the incidence of mixed sex as determined by histological evaluation. In contrast, exposure of larval X. laevis to 0.2 μg 17β-estradiol/l as the positive control resulted in gonadal feminization. Instead of an even distribution of male and female phenotypes, percentages of males:females:mixed sex were 19:75:6 and 22:60:18 in experiments 1 and 2, respectively. These studies demonstrate that long-term exposure of larval X. laevis to atrazine at concentrations ranging from 0.01 to 100 μg/l does not affect growth, larval development, or sexual differentiation

    Predictive coupled-cluster isomer orderings for some Sin{}_nCm{}_m (m,n12m, n\le 12) clusters; A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks

    Full text link
    The accurate determination of the preferred Si12C12{\rm Si}_{12}{\rm C}_{12} isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3_3 to Si12C12{\rm Si}_{12}{\rm C}_{12}. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and CCSD extrapolation with triple-ζ\zeta (T) correlation, the {\it closo} Si12C12{\rm Si}_{12}{\rm C}_{12} isomer is identified to be the preferred isomer in support of previous calculations [J. Chem. Phys. 2015, 142, 034303]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post MBPT(2) correlation energy is found to be an excellent balance between efficiency and accuracy

    Characterization of traverse slippage experienced by Spirit rover on Husband Hill at Gusev crater

    Get PDF
    Spirit rover experienced significant slips traversing Husband Hill. This paper analyzes the slippage Spirit experienced from Sol 154 to Sol 737. Slippage with respect to terrain type and slope is computed using data downlinked from the rover, rover position, and orientation estimations from visual odometry (VO) and photogrammetry based bundle adjustment (BA) method. Accumulated slippage reached a maximum of 83.86 m on Sol 648. However, as Spirit descended into the Inner Basin, the direction of slippage reversed, and accumulated slippage approached zero by the end of the entire traverse. Eight local regions with significant slips and nineteen traverse segments have been analyzed. Slippage was found to be highly correlated to slope direction and magnitude; the reverse of slope directions in the ascending and descending portions of the traverse proves to be the main contributor to the observed cancellation of slippage. While the horizontal component of the slippage almost canceled out, the difference in elevation continually accumulated, mainly during the ascent. In general, long traverse segments created more slips than short ones. This is reflected in both the accumulated and individual slippages. In considering the four major Mars terrain types, Spirit performed best on bedrock, managing to drive on slopes close to 30°. Fine-grain surfaces were the most challenging; though progress was made on slopes up to 15°, slippages of over 100% (more slippage than distance traveled) occurred for short segments. The results of this work can be incorporate into a traverse planning framework in which rover slippage is minimized. Results can be employed in landed planetary missions for precision navigation to avoid potentially dangerous regions by considering expected slippage

    User, Use & Utility Research - The Digital User as New Design Perspective in Business and Information Systems Engineering

    Get PDF
    Business and Information Systems Engineer- ing (BISE) is at a turning point. Planning, de- signing, developing and operating IT used to be a management task of a few elites in pub- lic ad-ministrations and corporations. But the continuous digitization of nearly all areas of life changes the IT landscape fundamentally. Success in this new era requires putting the human perspective – the digital user – at the very heart of the new digitized service-led economy. BISE faces not just a temporary trend but a complex socio-technical phenomenon with far-reaching implications. The challenges are manifold and have major consequences for all stakeholders, both in information systems and management research as well as in practice. Corporate processes have to be re-designed from the ground up, starting with the user’s perspective, thus putting usage experience and utility of the individual center stage. The digital service economy leads to highly personalized application systems while orga- nizational functions are being fragmented. Entirely new ways of interacting with infor- mation systems, in particular beyond desk- top IT, are being invented and established. These fundamental challenges require novel approaches with regards to innovation and development methods as well as adequate concepts for enterprise or service system ar- chitectures. Gigantic amounts of data are be- ing generated at an accelerating rate by an in- creasing number of devices – data that need to be managed. In order to tackle these extraordinary chal- lenges we introduce ‘user, use & utility’ as a new field of BISE that focuses primarily on the digital user, his or her usage behavior and the utility associated with system usage in the digitized service-led economy. The research objectives encompass the de- velopment of theories, methods and tools for systematic requirement elicitation, sys- tems design, and business development for successful Business and Information Systems Engineering in a digitized economy – infor- mation systems that digital users enjoy us- ing. This challenge calls for leveraging in- sights from various scientific disciplines such as Design, Engineering, Computer Science, Psychology and Sociology. BISE can provide an integrated perspective, thereby assuming a pivotal role within the digitized service led economy

    ACR Appropriateness Criteria® Spinal Bone Metastases

    Full text link
    The spine is a common site of involvement in patients with bone metastases. Apart from pain, hypercalcemia, and pathologic fracture, progressive tumor can result in neurologic deterioration caused by spinal cord compression or cauda equina involvement. The treatment of spinal bone metastases depends on histology, site of disease, extent of epidural disease, extent of metastases elsewhere, and neurologic status. Treatment recommendations must weigh the risk-benefit profile of external beam radiation therapy (EBRT) for the particular individual's circumstance, including neurologic status, performance status, extent of spinal disease, stability of the spine, extra-spinal disease status, and life expectancy. Patients with spinal instability should be evaluated for surgical intervention. Research studies are needed that evaluate the combination or sequencing of localized therapies with systemic therapies including chemotherapy, hormonal therapy (HT), osteoclast inhibitors (OI), and radiopharmaceuticals. The roles of stereotactic body radiation therapy (SBRT) in the management of spinal oligometastasis, radioresistant spinal metastasis, and previously irradiated but progressive spinal metastasis are emerging, but more research is needed to validate the findings from retrospective studies. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 2 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140115/1/jpm.2012.0376.pd

    Toward a Quantitative Estimate of Future Heat Wave Mortality under Global Climate Change

    Get PDF
    Background: Climate change is anticipated to affect human health by changing the distribution of known risk factors. Heat waves have had debilitating effects on human mortality, and global climate models predict an increase in the frequency and severity of heat waves. The extent to which climate change will harm human health through changes in the distribution of heat waves and the sources of uncertainty in estimating these effects have not been studied extensively. Objectives: We estimated the future excess mortality attributable to heat waves under global climate change for a major U.S. city. Methods: We used a database comprising daily data from 1987 through 2005 on mortality from all nonaccidental causes, ambient levels of particulate matter and ozone, temperature, and dew point temperature for the city of Chicago, Illinois. We estimated the associations between heat waves and mortality in Chicago using Poisson regression models. Results: Under three different climate change scenarios for 2081–2100 and in the absence of adaptation, the city of Chicago could experience between 166 and 2,217 excess deaths per year attributable to heat waves, based on estimates from seven global climate models. We noted considerable variability in the projections of annual heat wave mortality; the largest source of variation was the choice of climate model. Conclusions: The impact of future heat waves on human health will likely be profound, and significant gains can be expected by lowering future carbon dioxide emissions
    corecore