49 research outputs found

    Surface functionalization of biomedical Ti-6Al-7Nb alloy by liquid metal dealloying

    Get PDF
    Surface functionalization is an effective approach to change the surface properties of a material to achieve a specific goal such as improving the biocompatibility of the material. Here, the surface of the commercial biomedical Ti-6Al-7Nb alloy was functionalized through synthesizing of a porous surface layer by liquid metal dealloying (LMD). During LMD, the Ti-6Al-7Nb alloy is immersed in liquid magnesium (Mg) and both materials react with each other. Particularly, aluminum (Al) is selectively dissolved from the Ti-6Al-7Nb alloy into liquid Mg while titanium (Ti) and niobium (Nb) diffuse along the metal/liquid interface to form a porous structure. We demonstrate that the porous surface layer in the Ti-6Al-7Nb alloy can be successfully tailored by LMD. Furthermore, the concentration of harmful Al in this porous layer is reduced by about 48% (from 5.62 ± 0.11 wt.% to 2.95 ± 0.05 wt.%) after 30 min of dealloying at 1150 K. The properties of the porous layer (e.g., layer thickness) can be tuned by varying the dealloying conditions. In-vitro tests suggest improved bone formation on the functionalized porous surface of the Ti-6Al-7Nb alloy. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.European Research Council, ERCTohoku UniversityMinistry of Science and Higher Education of the Russian FederationNanjing University of Science and Technology, NUST: K2-2020-020MA 3333/13-1Supervision, I.V.O., R.W.-R., L.Z., L.M., J.E. and H.K.; Validation, I.V.O., S.-H.J., and B.L.; Writing – original draft, I.V.O. and B.L.; Writing – review & editing, all. All authors have read and agreed to the published version Funding: The financial support was provided by the German Science Foundation under the Leibniz Program of the manuscript. (Grant MA 3333/13-1), by the European Research Council (ERC) under the ERC Advanced Grant INTELHYB (grant Funding: The financial support was provided by the German Science Foundation under the Leibniz Program Ministry of Science and Higher Education of the Russian Federation, in the framework of the Increase Competitiveness (Grant MA 3333/13-1), by the European Research Council (ERC) under the ERC Advanced Grant INTELHYB Program of NUST «MISiS» (grant number K2-2020-020). I.V.O. is grateful for the financial support provided by the International Collaboration Center, Institute for Materials Research (ICC-IMR), Tohoku University, Japan. 02.A03.21.0006), and the Ministry of Science and Higher Education of the Russian Federation, in the framework Conflicts of Interest: The authors declare no conflict of interest. of the Increase Competitiveness Program of NUST «MISiS» (grant number K2-2020-020). I.V.O. is grateful for the financial support provided by the International Collaboration Center, Institute for Materials Research (ICC-IMR), Tohoku University, Japan

    Repeated co-option of HMG-box genes for sex determination in brown algae and animals

    Get PDF
    In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution’s ability to recurrently use the same genetic “toolkit” to accomplish similar tasks.</p

    Reporting trends, practices, and resource utilization in neuroendocrine tumors of the prostate gland: a survey among thirty-nine genitourinary pathologists

    Get PDF
    Background: Neuroendocrine differentiation in the prostate gland ranges from clinically insignificant neuroendocrine differentiation detected with markers in an otherwise conventional prostatic adenocarcinoma to a lethal high-grade small/large cell neuroendocrine carcinoma. The concept of neuroendocrine differentiation in prostatic adenocarcinoma has gained considerable importance due to its prognostic and therapeutic ramifications and pathologists play a pivotal role in its recognition. However, its awareness, reporting, and resource utilization practice patterns among pathologists are largely unknown. Methods: Representative examples of different spectrums of neuroendocrine differentiation along with a detailed questionnaire were shared among 39 urologic pathologists using the survey monkey software. Participants were specifically questioned about the use and awareness of the 2016 WHO classification of neuroendocrine tumors of the prostate, understanding of the clinical significance of each entity, and use of different immunohistochemical (IHC) markers. De-identified respondent data were analyzed. Results: A vast majority (90%) of the participants utilize IHC markers to confirm the diagnosis of small cell neuroendocrine carcinoma. A majority (87%) of the respondents were in agreement regarding the utilization of type of IHC markers for small cell neuroendocrine carcinoma for which 85% of the pathologists agreed that determination of the site of origin of a high-grade neuroendocrine carcinoma is not critical, as these are treated similarly. In the setting of mixed carcinomas, 62% of respondents indicated that they provide quantification and grading of the acinar component. There were varied responses regarding the prognostic implication of focal neuroendocrine cells in an otherwise conventional acinar adenocarcinoma and for Paneth cell-like differentiation. The classification of large cell neuroendocrine carcinoma was highly varied, with only 38% agreement in the illustrated case. Finally, despite the recommendation not to perform neuroendocrine markers in the absence of morphologic evidence of neuroendocrine differentiation, 62% would routinely utilize IHC in the work-up of a Gleason score 5 + 5 = 10 acinar adenocarcinoma and its differentiation from high-grade neuroendocrine carcinoma. Conclusion: There is a disparity in the practice utilization patterns among the urologic pathologists with regard to diagnosing high-grade neuroendocrine carcinoma and in understanding the clinical significance of focal neuroendocrine cells in an otherwise conventional acinar adenocarcinoma and Paneth cell-like neuroendocrine differentiation. There seems to have a trend towards overutilization of IHC to determine neuroendocrine differentiation in the absence of neuroendocrine features on morphology. The survey results suggest a need for further refinement and development of standardized guidelines for the classification and reporting of neuroendocrine differentiation in the prostate gland

    Slow degrading Mg-based materials induce tumor cell dormancy on an osteosarcoma-fibroblast coculture model

    No full text
    Osteosarcoma is one of the most common cancers in young adults and is commonly treated using surgery and chemotherapy. During the past years, these therapy approaches improved but failed to ameliorate the outcomes. Therefore, novel, targeted therapeutic approaches should be established to enhance treatment success while preserving patient's quality of life. Recent studies suggest the application of degradable magnesium (Mg) alloys as orthopedic implants bearing a potential antitumor activity. Here, we examined the influence of Mg-based materials on an osteosarcoma-fibroblast coculture. Both, Mg and Mg–6Ag did not lead to tumor cell apoptosis at low degradation rates. Instead, the Mg-based materials induced cellular dormancy in the cancer cells indicated by a lower number of Ki-67 positive cancer cells and a higher p38 expression. This dormancy-like state could be reversed by reseeding on non-degrading glass slides but could not be provoked by inhibition of the protein kinase R-like endoplasmic reticulum kinase. By investigating the influence of the disjunct surface-near effects of the Mg degradation on cell proliferation, an increased pH was found to be a main initiator of Mg degradation-dependent tumor cell proliferation inhibition

    Optimizing an osteosarcoma-fibroblast coculture model to study antitumoral activity of magnesium-based biomaterials

    No full text
    Osteosarcoma is among the most common cancers in young patients and is responsible for one-tenth of all cancer-related deaths in children. Surgery often leads to bone defects in excised tissue, while residual cancer cells may remain. Degradable magnesium alloys get increasing attention as orthopedic implants, and some studies have reported potential antitumor activity. However, most of the studies do not take the complex interaction between malignant cells and their surrounding stroma into account. Here, we applied a coculture model consisting of green fluorescent osteosarcoma cells and red fluorescent fibroblasts on extruded Mg and Mg–6Ag with a tailored degradation rate. In contrast to non-degrading Ti-based material, both Mg-based materials reduced relative tumor cell numbers. Comparing the influence of the material on a sparse and dense coculture, relative cell numbers were found to be statistically different, thus relevant, while magnesium alloy degradations were observed as cell density-independent. We concluded that the sparse coculture model is a suitable mechanistic system to further study the antitumor effects of Mg-based material

    Effect of seawater transfer on CYP1A gene expression in rainbow trout gills

    No full text
    International audienceDuring the transfer of rainbow trout from freshwater to seawater, the gills have to switch from an ion-absorption epithelium to an ion-secretion epithelium in order to maintain equilibrium of their hydromineral balance. After a change to ambient salinity, several gill modifications have already been demonstrated, including ion transporters. In order to identify new branchial mechanisms implicated in seawater acclimation, we carried out an extensive analysis of gene expression in gills using microarray technology. This strategy allowed us to show that CYP1A gene expression was up-regulated in the gills after salinity transfer. This increase was confirmed by real-time reverse transcription PCR. Furthermore, measurements of CYP1A enzyme activity (EROD) showed a significant increase after transfer to seawater. Immunohistochem-istry analysis in the gills revealed that cells with a higher expression of CYP1A protein were principally pillar cells and those in the primary lamellae not in contact with the external medium. The results of this study suggest for the first time that CYP1A may be implicated in the seawater acclimation of the gills of rainbow trout
    corecore