59 research outputs found

    Heat-stable enterotoxin receptor/guanylyl cyclase C is an oligomer consisting of functionally distinct subunits, which are non-covalently linked in the intestine

    Get PDF
    Guanylyl cyclase (GC) C is a heat-stable enterotoxin (STa) receptor with a monomeric M(r) of approximately 140,000. We calculated from its hydrodynamic parameters that an active GC-C complex has a M(r) of 393,000, suggesting that GC-C is a trimer under native conditions. Both trimeric and dimeric GC-C complexes were detected by 125I-STa binding and SDS-polyacrylamide gel electrophoresis under non-reducing conditions. The GC activity and STa binding from intestinal brush border membranes comigrated in gel filtration and velocity sedimentation with recombinant GC-C. However, 125I-STa cross-linking demonstrated that STa receptors with molecular masses of 52 and 74 kDa are non-covalently attached to GC in the intestine. Radiation inactivation revealed different functional sizes for basal GC activity, STa-stimulated GC activity, and STa binding (59, 210-240, and 32-52 kDa, respectively). At low radiation doses, basal GC activity was stimulated, suggesting that GC-C is inhibited by a relatively large, probably internal structure. These results suggest that STa may activate GC-C by promoting monomer-monomer interaction (internal "dimerization") within a homotrimeric GC-C complex, and that GC-C is proteolytically modified in the brush border membrane but retains its function

    Functional molecular mass of rat hepatic lipase in liver, adrenal gland and ovary is different

    Get PDF
    Lipoprotein lipase (LPL) is functionally active only as a dimer. It is also generally assumed that the highly homologous hepatic lipase functions as a dimer, but no clear evidence has been presented. A hepatic lipase-like activity, also indicated as L-type lipase, is present in adrenal and ovary tissues. This enzyme is thought to originate from the liver and to be identical to hepatic lipase. We determined the functional molecular mass of hepatic lipase in rat liver, adrenal gland and ovary by radiation inactivation, a method for determining the functional size of a protein without the need of prior purification. Samples were exposed to ionizing radiation at -135 degrees C. Hepatic lipase activity in liver homogenate showed a single exponential decay. The functional molecular mass was calculated to be 63 +/- 10 kDa. Hepatic lipase activity in adrenal homogenate was found to have a functional molecular mass of 117 +/- 16 kDa. The functional molecular masses of the lipases partially purified from rat liver perfusate, adrenal homogenate or ovarian homogenate showed the same pattern, a target mass for the liver enzyme of 56 +/- 6 kDa and a target mass of 117 +/- 14 kDa for the enzyme from adrenal gland or ovary. In Western blot analysis the mass of the structural units of hepatic lipase in liver was 57 kDa and in adrenal and ovary tissue 51 kDa. We conclude that the functional unit of hepatic lipase in the liver is a monomer. The enzyme in adrenal gland and ovary is different from the liver and the functional unit may be a dimer

    Pulse radiolysis with (sub) nanosecond time resolution using a 3MV electron accelerator

    No full text
    Applied Science
    corecore