48 research outputs found

    Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac research.

    Get PDF
    Optical mapping is an imaging technique that is extensively used in cardiovascular research, wherein parameter-sensitive fluorescent indicators are used to study the electrophysiology and excitation-contraction coupling of cardiac tissues. Despite many benefits of optical mapping, eliminating motion artifacts within the optical signals is a major challenge, as myocardial contraction interferes with the faithful acquisition of action potentials and intracellular calcium transients. As such, excitation-contraction uncoupling agents are frequently used to reduce signal distortion by suppressing contraction. When compared with other uncoupling agents, blebbistatin is the most frequently used, as it offers increased potency with minimal direct effects on cardiac electrophysiology. Nevertheless, blebbistatin may exert secondary effects on electrical activity, metabolism, and coronary flow, and the incorrect administration of blebbistatin to cardiac tissue can prove detrimental, resulting in erroneous interpretation of optical mapping results. In this “Getting It Right” perspective, we briefly review the literature regarding the use of blebbistatin in cardiac optical mapping experiments, highlight potential secondary effects of blebbistatin on cardiac electrical activity and metabolic demand, and conclude with the consensus of the authors on best practices for effectively using blebbistatin in optical mapping studies of cardiac tissue

    Bisphenol A exposure and cardiac electrical conduction in excised rat hearts

    Get PDF
    BACKGROUND: Bisphenol A (BPA) is used to produce polycarbonate plastics and epoxy resins that are widely used in everyday products, such as food and beverage containers, toys and medical devices. Human biomonitoring studies have suggested that a large proportion of the population may be exposed to BPA. Recent epidemiological studies have reported correlations between increased BPA urinary concentrations and cardiovascular disease; yet the direct effects of BPA on the heart are unknown. OBJECTIVES: The goal of our studies was to measure BPA\u27s effect (0.1-100 μM) on cardiac impulse propagation ex vivo, using excised whole hearts from adult rats. METHODS: We measured atrial and ventricular activation times during sinus and paced rhythms using epicardial electrodes and optical mapping of transmembrane potential. Atrioventricular activation intervals and epicardial conduction velocities were computed using recorded activation times. RESULTS: Cardiac BPA exposure resulted in prolonged PR segment and decreased epicardial conduction velocity (0.1 - 100 μM), prolonged action potential duration (1 - 100 μM) and delayed atrioventricular conduction (10 - 100 μM). Importantly, these effects were observed after acute exposure (≤ 15 min), underscoring the potential detrimental effects of continuous BPA exposure. The highest BPA concentration used (100 μM) resulted in prolonged QRS intervals, dropped ventricular beats and eventually resulted in complete heart block. CONCLUSIONS: Our results show that acute BPA exposure slows electrical conduction in excised hearts from female rats. These findings emphasize the importance of examining BPA\u27s effect on heart electrophysiology and determining whether chronic in vivo exposure can cause/exacerbate conduction abnormalities in patients with pre-existing heart conditions and other high-risk populations

    Mathematics and biology: a Kantian view on the history of pattern formation theory

    Get PDF
    Driesch’s statement, made around 1900, that the physics and chemistry of his day were unable to explain self-regulation during embryogenesis was correct and could be extended until the year 1972. The emergence of theories of self-organisation required progress in several areas including chemistry, physics, computing and cybernetics. Two parallel lines of development can be distinguished which both culminated in the early 1970s. Firstly, physicochemical theories of self-organisation arose from theoretical (Lotka 1910–1920) and experimental work (Bray 1920; Belousov 1951) on chemical oscillations. However, this research area gained broader acceptance only after thermodynamics was extended to systems far from equilibrium (1922–1967) and the mechanism of the prime example for a chemical oscillator, the Belousov–Zhabotinski reaction, was deciphered in the early 1970s. Secondly, biological theories of self-organisation were rooted in the intellectual environment of artificial intelligence and cybernetics. Turing wrote his The chemical basis of morphogenesis (1952) after working on the construction of one of the first electronic computers. Likewise, Gierer and Meinhardt’s theory of local activation and lateral inhibition (1972) was influenced by ideas from cybernetics. The Gierer–Meinhardt theory provided an explanation for the first time of both spontaneous formation of spatial order and of self-regulation that proved to be extremely successful in elucidating a wide range of patterning processes. With the advent of developmental genetics in the 1980s, detailed molecular and functional data became available for complex developmental processes, allowing a new generation of data-driven theoretical approaches. Three examples of such approaches will be discussed. The successes and limitations of mathematical pattern formation theory throughout its history suggest a picture of the organism, which has structural similarity to views of the organic world held by the philosopher Immanuel Kant at the end of the eighteenth century

    Optical characterisation of materials and systems for daylighting

    Full text link
    The measurement of BRTF (Bi-directional reflectance and transmittance function) is described using a new instrument which is capable of supplying BRTF data and algorithms for use in computer simulations directly on diffuse materials and indirectly on large samples and sub-systems. A high sensitivity and dynamic range is needed to achieve low minimum observable BRTF and the role of angular resolution are discussed with examples. Forward scattering with extended tails is found to dominate pigmented polycarbonate. Slatted blinds are discussed as examples of systems where azimuth is important

    Phthalate exposure changes the metabolic profile of cardiac muscle cells

    No full text
    Background: Phthalates are common plasticizers present in medical-grade plastics and other everyday products. They can also act as endocrine-disrupting chemicals and have been linked to the rise in metabolic disorders. However, the effect of phthalates on cardiac metabolism remains largely unknown. Objectives: We examined the effect of di(2-ethylhexyl)phthalate (DEHP) on the metabolic profile of cardiomyocytes because alterations in metabolic processes can lead to cell dysfunction. Methods: Neonatal rat cardiomyocytes were treated with DEHP at a concentration and duration comparable to clinical exposure (50-100 μg/mL, 72 hr). We assessed the effect of DEHP on gene expression using microarray analysis. Physiological responses were examined via fatty acid utilization, oxygen consumption, mitochondrial mass, and Western blot analysis. Results: Exposure to DEHP led to up-regulation of genes associated with fatty acid transport, esterification, mitochondrial import, and β-oxidation. The functional outcome was an increase in myocyte fatty acid-substrate utilization, oxygen consumption, mitochondrial mass, PPARα (peroxisome proliferator-activated receptor α) protein expression, and extracellular acidosis. Treatment with a PPARα agonist (Wy-14643) only partially mimicked the effects observed in DEHP-treated cells. Conclusions: Data suggest that DEHP exposure results in metabolic remodeling of cardiomyocytes, whereby cardiac cells increase their dependence on fatty acids for energy production. This fuel switch may be regulated at both the gene expression and posttranscription levels. Our findings have important clinical implications because chronic dependence on fatty acids is associated with an accumulation in lipid intermediates, lactate, protons, and reactive oxygen species. This dependence can sensitize the heart to ischemic injury and ventricular dysfunction

    Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions

    No full text
    © 2017 The Authors Background: Treatment of cardiac arrhythmias often involves ablating viable muscle tissue within or near islands of scarred myocardium. Yet, today there are limited means by which the boundaries of such scars can be visualized during surgery and distinguished from the sites of acute injury caused by radiofrequency (RF) ablation. Objective: We sought to explore a hyperspectral imaging (HSI) methodology to delineate and distinguish scar tissue from tissue injury caused by RF ablation. Methods: RF ablation of the ventricular surface of live rats that underwent thoracotomy was followed by a 2-month animal recovery period. During a second surgery, new RF lesions were placed next to the scarred tissue from the previous ablation procedure. The myocardial infarction model was used as an alternative way to create scar tissue. Results: Excitation-emission matrices acquired from the sites of RF lesions, scar region, and the surrounding unablated tissue revealed multiple spectral changes. These findings justified HSI of the heart surface using illumination with 365 nm UV light while acquiring spectral images within the visible range. Autofluorescence-based HSI enabled to distinguish sites of RF lesions from scar or unablated myocardium in open-chest rats. A pilot version of a percutaneous HSI catheter was used to demonstrate the feasibility of RF lesion visualization in atrial tissue of live pigs. Conclusion: HSI based on changes in tissue autofluorescence is a highly effective tool for revealing—in vivo and with high spatial resolution—surface boundaries of myocardial scar and discriminating it from areas of acute necrosis caused by RF ablation
    corecore