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PERSPECTIVES

Getting It Right

Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac
research

Luther M. Swift,1,2 Matthew W. Kay,3 Crystal M. Ripplinger,6 and Nikki Gillum Posnack1,2,4,5
1Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia; 2Sheikh Zayed Institute for
Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia; 3Department of Biomedical
Engineering, George Washington University, Washington, District of Columbia; 4Department of Pediatrics, George
Washington University, Washington, District of Columbia; 5Department of Pharmacology and Physiology, George Washington
University, Washington, District of Columbia; and 6Department of Pharmacology, University of California, Davis, California

Abstract

Optical mapping is an imaging technique that is extensively used in cardiovascular research, wherein parameter-sensitive fluo-
rescent indicators are used to study the electrophysiology and excitation-contraction coupling of cardiac tissues. Despite many
benefits of optical mapping, eliminating motion artifacts within the optical signals is a major challenge, as myocardial contraction
interferes with the faithful acquisition of action potentials and intracellular calcium transients. As such, excitation-contraction
uncoupling agents are frequently used to reduce signal distortion by suppressing contraction. When compared with other uncou-
pling agents, blebbistatin is the most frequently used, as it offers increased potency with minimal direct effects on cardiac elec-
trophysiology. Nevertheless, blebbistatin may exert secondary effects on electrical activity, metabolism, and coronary flow, and
the incorrect administration of blebbistatin to cardiac tissue can prove detrimental, resulting in erroneous interpretation of optical
mapping results. In this “Getting It Right” perspective, we briefly review the literature regarding the use of blebbistatin in cardiac
optical mapping experiments, highlight potential secondary effects of blebbistatin on cardiac electrical activity and metabolic
demand, and conclude with the consensus of the authors on best practices for effectively using blebbistatin in optical mapping
studies of cardiac tissue.

blebbistatin; cardiac physiology; excitation-contraction uncoupler; optical mapping

INTRODUCTION

Optical mapping is a fluorescence imaging approach used
to study physiological processes of cardiac tissue and cell
preparations, and it is used extensively in basic cardiac elec-
trophysiology research. The great utility of optical mapping
is that it provides unparalleled insight into the spatiotempo-
ral dynamics of electrophysiology and excitation-contrac-
tion coupling (ECC), albeit with a few key technical hurdles.
The field of cardiac optical mapping sprang from the initial
work of Salama and Morad, who first recorded optical action
potentials from frog hearts using voltage-sensitive dyes (1).
Prior to optical approaches, absolute transmembrane poten-
tial was measured from tissue preparations and intact hearts
using glass microelectrodes, although this approach is tech-
nically challenging and spatial information is limited by the
number of electrodes that can be inserted into the tissue (2).
Electrical activity can also bemapped using arrays of electro-
des placed in contact with the tissue (3, 4). However, elec-
trode array mapping is limited by the number and spacing of

electrodes and the electrograms are often contaminated by
electrical artifacts that occur during pacing and defibrilla-
tion. In contrast, the development of optical mapping
offered a new mapping approach with superior spatial reso-
lution (5) that is determined by the image sensor specifica-
tions (sensor size, number of pixels, and quantum efficiency)
and the optical field of view (6). Additionally, the use of cal-
cium-sensitive probes enabled simultaneous measurements
of electrical activity and intracellular calcium cycling, as
demonstrated by Choi and Salama at the turn of the century
(7) and now provides unprecedented insight into ECC pa-
rameters in normal and diseased hearts (8–13).

EXCITATION-CONTRACTION UNCOUPLING

The primary challenge of imaging cardiac tissue lies in the
very function of the heart itself, pressure development
through contraction. Distortions of optical signals acquired
from cardiac tissue that result from unconstrainedmyocardial
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contraction are often much larger than the physiological sig-
nal transduced by a fluorescent probe. To reduce these distor-
tions, hearts have been mechanically constrained against a
glass window or with a nylon mesh (14, 15) while optically
mapping the epicardium. A limitation of mechanical con-
straint is that the contact pressure could reduce coronary flow,
causing local ischemia. Any residual motion could still nega-
tively impact the accuracy of measuring action potential dura-
tion (APD) or APD restitution due to persistent motion artifact
(16–18), especially at the edges of the tissue. More recently,
motion tracking and ratiometric imaging have enabled optical
mapping of transmembrane potential in unconstrained con-
tracting perfused hearts, including working heart preparations
(16, 17, 19–22). Further developments in optics and motion
tracking algorithms might one day eliminate the need for
motion suppression during optical mapping.

However, fully contracting perfused heart preparations
may pose an additional set of challenges, especially in stud-
ies of ischemia, hypoxia, and metabolism, in that crystalloid
buffers are typically used as a perfusate (23). This is impor-
tant because the heart’s contractile machinery is responsible
for �75% of its metabolic demand (24), and as such, crystal-
loid perfusates may lack adequate oxygen-carrying capacity
to meet myocardial oxygen demand during elevated heart
rates (20, 23, 25–27). This is likely why coronary flow rate in
Langendorff-perfused hearts can be several times greater
than what is measured under normal physiological condi-
tions (28, 29). Indeed, perfused heart experiments where the
crystalloid perfusate was supplemented with an oxygen car-
rier, such as erythrocytes or other circulating transporters
like perfluorocarbons, have revealed the important impact of
myocardial oxygen delivery on the electrophysiology, mito-
chondrial energetics, and contractile performance of per-
fused hearts (25, 30–32). Relevant to optical mapping, a
limitation of supplementing perfusate with erythrocytes is
that hemoglobin absorbs light within visible wavelength
bands that overlap with the fluorescence of most voltage- and
calcium-sensitive probes, necessitating a mapping approach
that prevents the erythrocyte-supplemented perfusate from
entering the mapped field of view (33). Furthermore, new
near-infrared potentiometric probes that fluoresce beyond
the absorption band of hemoglobin have recently been used
to optically map in vivo and ex vivo blood-perfused hearts (14,
17, 34, 35). The success of such experiments is an exciting step
forward in elevating the physiological relevance of optical
mapping.

In most optical mapping studies, motion artifacts are sup-
pressed by administering an excitation-contraction (EC)
uncoupling agent to the tissue that prevents myocyte
contraction by inhibiting actomyosin cross-bridge cycling.
Many early cardiac optical mapping studies used 2,3-butane-
dione monoxime (BDM), also known as diacetyl monoxime
(DAM), and cytochalasin D (CytoD) as EC uncoupling agents.
Although the precise mechanism of action of these two com-
pounds is not fully understood, these EC uncouplers gener-
ally act as noncompetitive inhibitors of muscle myosin II by
inhibiting myosin ATPase, thereby disrupting actin-myosin
polymerization to reduce or eliminate contraction (36–38).
Since these compounds are nonspecific, relatively high con-
centrations are often needed to completely inhibit contrac-
tion throughout the tissue. The high concentrations and lack

of specificity lead to measurable effects on ion channel
kinetics, changes to intracellular calcium handling, and
altered action potential morphology. As an example, BDM has
been shown to decrease L-type calcium current and reduce
calcium transients (39–41), flatten the restitution curve, and
induce APD shortening (42). Conversely, in mouse hearts,
CytoD and BDM have been reported to increase APD and re-
fractory periods and slow conduction velocity (43). Peak sys-
tolic and diastolic calcium appears elevated in mouse hearts
exposed to CytoD; however, BDM has the opposite effect.
Interestingly, the side effects of these uncouplers may be spe-
cies dependent (40, 41, 43).

In 2003, blebbistatin (Bleb) was introduced as a more
potent and specific myosin II inhibitor (44). It was quickly
adopted by many optical mapping laboratories due to its
ease of use (it is less toxic than CytoD) and its efficacy in halt-
ing cardiac contraction without the apparent side effects
observed with other uncoupling agents (45, 46). Named for
its ability to disrupt cell motility (44, 47), blebbistatin has
proven useful in a range of research areas including cancer
research, cell differentiation and migration, cytokinesis,
neuroscience, as well as skeletal, smooth, and cardiacmuscle
research (48). To assess a snapshot of the use of EC uncou-
plers in cardiac optical mapping research over time, we eval-
uated articles published in American Journal of Physiology-
Heart and Circulatory Physiology (AJP) for the type of EC
uncoupling agent used for optical mapping. A total of 164
articles published from 1993 to 2020 were identified from a
search of the journal website (accessed on 14 May, 2021 by L.
M.S.) using the terms: optical mapping in combination with
the following keywords: “2,3-butanedione monoxime” (n =
52) “diacetyl monoxime” (n = 15), “cytochalasin D” (n = 37),
and “blebbistatin” (n = 63). The three papers that appeared
in both the search for “diacetyl monoxime” and the search
for “2,3-butanedione monoxime” were only counted once.
As shown in Fig. 1, since its first use for optical mapping in
2007, blebbistatin has all but replaced the other available EC
uncouplers. In fact, in the last 3 years alone, blebbistatin was
used twice as often (10–13, 49–58) as any other uncoupler for
imaging applications (59–65). The use of BDM/DAM and
CytoD for optical mapping has essentially ceased; yet due to
its lower cost, BDM/DAMmay still be a reasonable choice for
larger animal (i.e., nonrodent) studies (59, 66–71), which
require larger amounts of an EC uncoupler (72). Clearly,
blebbistatin is currently the most popular choice in cardiac
optical mapping (Fig. 1), as it can be used at much lower con-
centrations and is less toxic compared with the other EC
uncouplers (42, 43, 45, 73).

Blebbistatin’s mechanism of action as an EC uncoupler is
that it inhibits the ATPases associated primarily with class II
myosin isoforms in an actin-detached position, yet it dis-
plays little affinity for the rest of the myosin superfamily (47,
74, 75). Importantly, when applied at a concentration that
eliminates cardiac tissue contraction, it was reported to have
little measurable effect on intracellular calcium handling,
action potential morphology, ECG parameters, sinoatrial
node activity, and activation patterns (45). Unlike CytoD and
BDM/DAM, which must be used at higher concentrations to
halt contraction (80 mM to 10mM), blebbistatin is effective at
much lower circulating concentrations (5–15 mM). Notably,
even at higher concentrations (25 mM), sinoatrial node cells
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retain their intrinsic firing rate with no measurable changes
in calcium handling, unlike BDM (73). Although blebbistatin
has proven to be an incredibly useful compound for cardiac
optical mapping studies, it too comes with caveats, including
some degree of photoinstability, cytotoxicity, and intrinsic
fluorescence (76, 77). There have also been reports of second-
ary effects on electrical activity, metabolism, and vessel
occlusion in excised perfused heart experiments (16, 78).

ELECTROPHYSIOLOGICAL AND METABOLIC
CONSIDERATIONS

In the foundational 2007 study by Fedorov et al., the effects
of blebbistatin on isolated rat cardiomyocytes and excised
perfused rabbit hearts were first reported. Blebbistatin was
found to inhibit cardiac contraction without measurable
effects on cardiac electrophysiology end points, including
sinoatrial node activity, epicardial conduction velocity, repo-
larization, and intracellular calcium cycling (45). Several years
later, using monophasic action potential recordings from

perfused rabbit hearts, Lou et al. corroborated that BDM flat-
tened the APD restitution curve, but blebbistatin did not; nor
did it change monophasic APD (42). Brack et al. later con-
firmed that atrioventricular and ventricular conduction
remained unchanged after administering blebbistatin, but
they reported effects on APD restitution, ventricular effective
refractory period, and the threshold for ventricular fibrillation
in perfused rabbit hearts (78). Recently, Kappadan et al. also
reported that blebbistatin prolonged APD in rabbit hearts by
25% (16), and recent in vivo studies found that blebbistatin
prolonged APD and slowed conduction velocity in swine
hearts (17). It is still unclear whether these observed effects
are directly attributed to blebbistatin nonspecifically interact-
ing with ion channels or transporters, or rather, a secondary
consequence of the altered metabolic state of the heart
during EC uncoupling, as oxygen demand and ATP con-
sumption are reduced (Fig. 2) (26).

In particular, several important aspects of using perfused
hearts for optical mapping arise from the fact that the heart’s
metabolicmachinery is intertwinedwith electrical excitation

Figure 1. Annual number of American
Journal of Physiology-Heart publications
from 1993 to 2020 that used excitation-
contraction uncoupling agents [CytoD,
BDM (DAM), Bleb] in cardiac optical map-
ping studies. BDM, 2,3-butanedionemonox-
ime; Bleb, blebbistatin; CytoD, cytochalasin
D; DAM, diacetyl monoxime.

Figure 2. Major metabolic effects of blebbistatin on per-
fused hearts. Left: beating hearts perfused with crystalloid
buffers may have significant IKATP due to low ATP/ADP ratio,
which can shorten the action potential duration. Right: bleb-
bistatin treatment reduces metabolic demand, increases
ATP/ADP ratio, and may decrease IKATP, resulting in a longer
action potential duration. Coronary flow is also typically
reduced under these conditions. Notably, intracellular cal-
cium transients are minimally affected by blebbistatin. AP,
action potential; Ca2þ , intracellular calcium transient; IKATP,
ATP-sensitive potassium channel current. Created with
BioRender.com, and published with permission.
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and mechanical output and feedback mechanisms are de-
pendent on oxygen supply and ATP availability (79). After
excitation-contraction is uncoupled, perfused hearts have a
fourfold drop in oxygen demand, which dramatically slows
cellular metabolic processes throughout the tissue (24, 26).
This reduction in myocardial metabolic demand could dra-
matically impact the sarcolemmal ATP-sensitive potassium
channel current (IKATP), essentially reducing the repolarizing
current to zero when cellular ATP/ADP ratio is high, such as
when there is no cross-bridge cycling during EC uncoupling.
Indeed, previous studies in rabbit hearts perfused with fully
oxygenated crystalloid perfusate found that IKATP was active
during sinus rhythm and this activity increased when heart
rate increased (20). Therefore, administering blebbistatin to
a perfused heart would then result in a loss of contraction, a
large reduction in oxygen demand, an increase in cellular
ATP/ADP ratio, a reduction in sarcolemmal IKATP, and a lon-
ger APD.

Consideration of this reduced metabolic rate is especially
important when using EC uncouplers for research inquiries
that have an ischemic component (27, 80). This aspect was
highlighted in previous experiments of globally ischemic
rabbit hearts, wherein blebbistatin administered before is-
chemia prolonged (by �100%) the time required for mito-
chondrial membrane potential to collapse as well as the time
to asystole (80). This underscores the fact that EC uncou-
pling dramatically slows the effect of ischemia, so the down-
stream physiological changesmust be considered within this
context.

Appropriate oxygenation of perfused cardiac tissue is
therefore a critical factor for mimicking in vivo conditions
and must be carefully considered during experiments using
crystalloid perfusate. Contracting hearts, either retrograde
(Langendorff) or anterograde perfused (working heart) with
crystalloid perfusate, have an increased risk of myocardial
hypoxia compared with EC uncoupled hearts (25–27). This is
revealed by action potential triangulation at faster pacing
frequencies, which is associated with hypoxia (oxygen
demand exceeds oxygen supply) and is linked to KATP chan-
nel activation, as explained above. Furthermore, APD resti-
tution curves in contracting rabbit hearts can be achieved
down to 100 ms; however, in blebbistatin-treated hearts,
electrical alternans are observed at slower rates (16).
Altogether, changes in APD, APD restitution, and conduc-
tion velocity after administering blebbistatin may therefore
be, at least in part, attributed to the dramatic change in met-
abolic rate. In this way, if a vigorously contracting crystal-
loid-perfused heart, which may be partially hypoxic with
significant IKATP, is uncoupled to a state with increased ATP
availability, the reduction in IKATP and subsequent APD pro-
longation could be substantial.

A related observation is the pronounced effect of blebbis-
tatin on coronary flow rate. In perfused rodent hearts, the
administration of blebbistatin results in increased perfusion
pressure and decreased flow rate over time. In perfused rab-
bit hearts, blebbistatin initiates a brief period of increased
coronary flow, but as contractions wane and metabolic
demand diminishes, vasoconstriction initiates a reduction
in the coronary flow rate (78, 81). In summary, it is important
to consider that experimental end points measured from EC
uncoupled tissue are measured during the condition of a

very low rate of cellular metabolism and should therefore be
interpreted accordingly.

INTRACELLULAR CALCIUM CYCLING
CONSIDERATIONS

In contrast to reports that CytoD is associated with higher
diastolic intracellular [Ca2þ ] and BDM prolongs intracellular
Ca2þ transients (43), these parameters appear to be mini-
mally affected by blebbistatin. In the original study by
Fedorov et al., blebbistatin was associated with an increase
in the fluorescence of an intracellular Ca2þ -sensitive probe
(Fluo-5F, AM), which the authors attributed to Ca2þ release
into the cytoplasm during relaxation and/or the intrinsic flu-
orescent properties of blebbistatin (45). Using isolated rat
cardiac myocytes, Farman et al. reported an elevation in dia-
stolic Ca2þ in the presence of 0.5 mM blebbistatin when
Fluo-4, but not Indo-1, was used as the calcium indicator dye
(82). This observation may also explain APD prolongation af-
ter administering blebbistatin, as increased intracellular
[Ca2þ ] can alter both the APD and intracellular calcium tran-
sient amplitude. This phenomenon mirrors the action of
CytoD, albeit at higher concentrations (43). In contrast, Jian
et al. reported a reduction in the calcium transient ampli-
tude when blebbistatin was applied to cardiomyocytes under
strong mechanical load (stiff gel), but the resulting calcium
transient amplitude was not different from cells with either
no or smaller (soft gel) mechanical load (83). These findings
highlight the important role of mechanotransduction in
mediating cellular signaling but suggest nominal direct
pharmacological effects of blebbistatin per se on intracellu-
lar Ca2þ cycling in both isolated cell and perfused hearts.

BEST PRACTICES FOR PREPARING AND
USING BLEBBISTATIN

In addition to the physiological effects of EC uncoupling,
there are additional technical considerations that could
influence optical mapping outcomes and data interpretation
when using blebbistatin. First, blebbistatin is reported to
undergo photoinactivation that is associated with toxicity in
cell culture models (84). Although, to date, this result has
not been validated in experiments of perfused cardiac tissue,
as constant epicardial illumination for >1 h with UV light
did not affect optical action potentials (76). Second, it is im-
portant to use an adequate concentration of blebbistatin to
halt contraction throughout the tissue to most effectively
minimize motion artifacts. The literature commonly reports
the use of a circulating blebbistatin concentration of 5–10
mM, although we have found that blebbistatin works best
when a higher concentration is administered as a bolus dose
to the heart (up to 50 mM), which dilutes in the perfusion sys-
tem to a 10 mM circulating concentration. If tissue motion
returns, an additional bolus dose can be applied. If a very
low level of motion persists then the resulting motion arti-
fact can be removed from the mapping data using a nonrigid
motion registration algorithm (85), as recently described
(58). Depending on desired experimental outcomes, some
level of residual motion artifact (or foregoing the use of an
uncoupler at all) may be acceptable. For example, activation

BLEBBISTATIN, OPTICAL MAPPING

H1008 AJP-Heart Circ Physiol � doi:10.1152/ajpheart.00477.2021 � www.ajpheart.org
Downloaded from journals.physiology.org/journal/ajpheart at George Washington Univ Med Ctr (128.164.087.195) on December 7, 2021.

http://www.ajpheart.org


times, activation maps, conduction velocity, and sites of lead-
ing pacemakers or ectopic activity can typically be accurately
reconstructed even without EC uncoupling (7, 86), as contrac-
tion always occurs after the action potential upstroke. We

have found that the amount of acceptable residual motion
depends on the experimental design and imaging approach.
For instance, motion artifact can be more pronounced at the
edges of the tissue and is typically worse at higher magnifica-
tions. For each experimental design and hypothesis being
tested, pilot experiments are recommended to determine the
optimal blebbistatin dose.

Third, the chemical data sheets for blebbistatin report that
it is soluble in DMSO in a range from 12.5 mg/mL (Caymen)
up to 58 mg/mL (Selleckchem), but it has limited solubility in
aqueous solutions. There is little to no information on the
best approach for diluting a concentrated stock solution of
blebbistatin dissolved in DMSO. We have found that this is a
particularly important procedure, especially when adding a
small volume of concentrated DMSO þ blebbistatin solution
to perfusate media, because the blebbistatin could unexpect-
edly precipitate out of solution due to spontaneous blebbista-
tin crystallization (Fig. 3) (76). To prevent this, we have found
that vigorous agitation and heating of the perfusate solution
(37�C–42�C) are necessary when diluting blebbistatin from
DMSO stock. Furthermore, an inline filter (5 mm) is recom-
mended to trap crystals that could occlude the coronary
microvessels and capillaries (16, 76). After delivering to the tis-
sue, the bolus dose of DMSO þ blebbistatin þ perfusate will
be diluted by the total volume of the recirculated perfusate,
ultimately resulting in a final circulating concentration of�10
mM blebbistatin. Perfusate temperature should be maintained
at 37�C for the duration of the experiment to reduce the likeli-
hood of blebbistatin crystallization. If the blebbistatin
solubility range is exceeded, or the procedure for diluting
blebbistatin stock in perfusate is improper, or perfusate tem-
perature is not maintained, then blebbistatin crystals over 20

Figure 3. Blebbistatin crystallization within a perfused heart—the “disco
heart” effect. Top: blebbistatin crystals have accumulated within the vas-
culature but are not visible unless the tissue is illuminated with UV light
(365±5 nm). Bottom: the size of the blebbistatin crystals, both in the vas-
culature (left) and in solution (right). Reprinted with permission. [Swift 2012,
Pflugers Arch (76)].

Figure 4. Authors’ recommendations for
use of blebbistatin for optical mapping
experiments. MAP, monophasic action
potentials. Created with BioRender.com,
and published with permission.
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mmcould form in the perfusate and occlude the capillary beds
(Fig. 3), leading to local areas of ischemia and increasing inci-
dence of arrhythmias (76).

Fourth, experiments requiring the use of blebbistatin (or
any EC uncoupler) should be carefully designed to ensure
that appropriate control (or sham/vehicle) groups are stud-
ied in which equal doses of blebbistatin and identical meth-
ods of administering blebbistatin are used across all
experimental groups. In this way, any metabolic effects of
EC uncoupling should be similar between groups and any
electrophysiological differences observed could be attributed
to the hypothesis being tested, rather than secondary effects
of EC uncoupling. Finally, for studies related to metabolism,
oxygenation, and ATP availability (e.g., ischemia, hypoxia),
alternative approaches that do not require EC uncoupling
could be considered to validate results, including floating
glass microelectrodes (87) or monophasic action potential
recordings (22, 88), or isolated cardiomyocyte studies (89).

CONCLUSIONS

Forty-five years after the first optical action potentials were
recorded from a frog heart, optical mapping of cardiac tissues
continues to inform our understanding of basic cardiac
physiology, pathophysiology, and provide insight into the
mechanisms of clinical therapies for cardiac disease and
arrhythmias. Since 2007, the use of blebbistatin as the EC
uncoupler of choice for most experimentalists has no doubt
improved the translational relevance of cardiac optical map-
ping studies due to minimal effects on cardiac electrophysiol-
ogy and calcium handling, especially when compared with
earlier pharmacological agents. Considering the electrophysio-
logical, metabolic, and technical considerations outlined here,
the authors have recommended a set of best practices for
using blebbistatin as an EC uncoupler (see Fig. 4). Although
optical mapping of in vivo, contracting, blood-perfused hearts
may be considered the “gold standard,” various hypotheses,
experimental designs, animal models, and mapping of human
hearts may continue to necessitate in vitro optical mapping
studies, and because of its ease of use, blebbistatin is likely to
remain a cornerstone of such experiments. To study the orch-
estrated events that underlie cardiac function, sometimes you
need to stop the beat to see the rhythm.
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