1,407 research outputs found

    Nonuniversal spectral properties of the Luttinger model

    Full text link
    The one electron spectral functions for the Luttinger model are discussed for large but finite systems. The methods presented allow a simple interpretation of the results. For finite range interactions interesting nonunivesal spectral features emerge for momenta which differ from the Fermi points by the order of the inverse interaction range or more. For a simplified model with interactions only within the branches of right and left moving electrons analytical expressions for the spectral function are presented which allows to perform the thermodynamic limit. As in the general spinless model and the model including spin for which we present mainly numerical results the spectral functions do not approach the noninteracting limit for large momenta. The implication of our results for recent high resolution photoemission measurements on quasi one-dimensional conductors are discussed.Comment: 19 pages, Revtex 2.0, 5 ps-figures, to be mailed on reques

    Variational Study of the Spin-Gap Phase of the One-Dimensional t-J Model

    Full text link
    We propose a correlated spin-singlet-pairs wave function to describe the spin-gap phase of the one-dimensional tJt-J model at low density. Adding a Jastrow factor with a variational parameter, ν\nu, first introduced by Hellberg and Mele, is shown to correctly describe the long-range behavior expected for the Luther-Emery phase. Using the variational Monte Carlo method we establish a relation between ν\nu and the Luttinger exponent KρK_\rho, Kρ=12νK_\rho=\frac{1}{2\nu}.Comment: 4 pages (LaTex), 3 figures attache

    Antiferromagnetic Heisenberg chains with bond alternation and quenched disorder

    Full text link
    We consider S=1/2 antiferromagnetic Heisenberg chains with alternating bonds and quenched disorder, which represents a theoretical model of the compound CuCl_{2x}Br_{2(1-x)}(\gamma-{pic})_2. Using a numerical implementation of the strong disorder renormalization group method we study the low-energy properties of the system as a function of the concentration, x, and the type of correlations in the disorder. For perfect correlation of disorder the system is in the random dimer (Griffiths) phase having a concentration dependent dynamical exponent. For weak or vanishing disorder correlations the system is in the random singlet phase, in which the dynamical exponent is formally infinity. We discuss consequences of our results for the experimentally measured low-temperature susceptibility of CuCl_{2x}Br_{2(1-x)}(\gamma-{pic})_2

    Spin-density wave versus superconducting fluctuations for quasi-one-dimensional electrons in two chains of Tomonaga-Luttinger liquids

    Full text link
    We study possible states at low temperatures by applying the renormalization-group method to two chains of Tomonaga-Luttinger liquids with both repulsive intrachain interactions and interchain hopping. As the energy decreases below the hopping energy, three distinct regions I, III, and II appear successively depending on properties of fluctuations. The crossover from the spin-density wave (SDW) state to superconducting (SC) state takes place in region III where there are the excitation gaps of transverse charge and spin fluctuations. The competition between SDW and SC states in region III is crucial to understanding the phase diagram in the quasi-one-dimensional organic conductors.Comment: 11 pages, Revtex format, 1 figure, to be published in Phys. Rev.

    DC Josephson Effect in a Tomonaga-Luttinger Liquid

    Full text link
    The dc Josephson effect in a one-dimensional Tomonaga-Luttinger (TL) liquid is studied on the basis of two bosonized models. We first consider a TL liquid sandwiched between two superconductors with a strong barrier at each interface. Both the interfaces are assumed to be perfect if the barrier potential is absent. We next consider a TL liquid with open boundaries, weakly coupled with two superconductors. Without putting strong barriers, we instead assume that the coupling at each interface is described by a tunnel junction. We calculate the Josephson current in each model, and find that the two models yield same results. The Josephson current is suppressed by repulsive electron-electron interactions. It is shown that the suppression is characterized by only the correlation exponent for the charge degrees of freedom. This result is inconsistent with a previously reported result, where the spin degrees of freedom also affects the suppression. The reason of this inconsistency is discussed.Comment: 18 page

    Spin Defects in Spin-Peierls Systems

    Full text link
    We examine spin-Peierls systems in the presence of spin defects which are introduced by replacing magnetic ions Cu2+Cu^{2+} with non-magnetic ones Zn2+Zn^{2+} in CuGeO3CuGeO_3. By using the action for the bosonized Hamiltonian, it is shown directly that the antiferromagnetic state induced by the spin defects coexists with the spin-Peierls states. Further the doping dependences of both transition temperature of spin-Peierls state and the spin gap have been calculated. The transition temperature of the present estimation shows good agreement quantitatively with that observed in Cu_{1-\de} Zn_\de O_3 for the region of the doping rate, \de<0.02.Comment: jpsj style, 11 pages, 2 figure

    Economic Analysis of Carryover Policies for the United States Wheat Industry

    Get PDF
    The Oklahoma Agricultural Experiment Station periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Tunneling and orthogonality catastrophe in the topological mechanism of superconductivity

    Full text link
    We compute the angular dependence of the order parameter and tunneling amplitude in a model exhibiting topological superconductivity and sketch its derivation as a model of a doped Mott insulator. We show that ground states differing by an odd number of particles are orthogonal and the order parameter is in the d-representation, although the gap in the electronic spectrum has no nodes. We also develop an operator algebra, that allowes one to compute off-diagonal correlation functions.Comment: 4 pages, Revtex, psfig; some references are correcte

    Competition of Dimerization and Charge Ordering in the Spin-Peierls State of Organic Conductors

    Full text link
    The effect of the charge ordering on the spin-Peierls (SP) state has been examined by using a Peierls-Hubbard model at quarter-filling with dimerization, on-site and nearest-neighbor repulsive interactions. By taking account of the presence of dimerization, a bond distortion is calculated variationally with the renormalization group method based on bosonization. When the charge ordering appears at V=V_c with increasing the nearest-neighbor interaction (V), the distortion exhibits a maximum due to competition between the dimerization and the charge ordering. It is shown that the second-order phase transition occurs from the SP state with the bond alternation to a mixed state with an additional component of the site alternationat V = V_c.Comment: 11 pages, 13 figures, to be published in J. Phys. Soc. Jpn. 72 No.6 (2003

    Ultrafast Hole Trapping and Relaxation Dynamics in p-Type CuS Nanodisks

    Get PDF
    CuS nanocrystals are potential materials for developing low-cost solar energy conversion devices. Understanding the underlying dynamics of photoinduced carriers in CuS nanocrystals is essential to improve their performance in these devices. In this work, we investigated the photoinduced hole dynamics in CuS nanodisks (NDs) using the combination of transient optical (OTA) and X-ray (XTA) absorption spectroscopy. OTA results show that the broad transient absorption in the visible region is attributed to the photoinduced hot and trapped holes. The hole trapping process occurs on a subpicosecond time scale, followed by carrier recombination (~100 ps). The nature of the hole trapping sites, revealed by XTA, is characteristic of S or organic ligands on the surface of CuS NDs. These results not only suggest the possibility to control the hole dynamics by tuning the surface chemistry of CuS but also represent the first time observation of hole dynamics in semiconductor nanocrystals using XTA
    corecore