92 research outputs found

    Linking ventilation heterogeneity quantified via hyperpolarized He-3 MRI to dynamic lung mechanics and airway hyperresponsiveness

    Get PDF
    Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject’s forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P < 0.0001), the difference between high and low frequency lung resistance (R = 0.668, P < 0.0001), and low-frequency lung elastance (R = 0.547, P = 0.0003). In asthmatic subjects with PC20 values <25 mg/mL, the coefficient of variation at baseline exhibited a strong negative trend (R = -0.798, P = 0.02) to PC20 dose. Our findings were consistent with the notion of peripheral rather than central involvement of ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy.This work was funded by the National Heart, Lung, and Blood Institute Grants R01 HL62269-04 and R01 HL-096797

    Computing a Uniform Scaling Parameter for 3D Registration of Lung Surfaces

    Full text link
    A difficulty in lung image registration is accounting for changes in the size of the lungs due to inspiration. We propose two methods for computing a uniform scale parameter for use in lung image registration that account for size change. A scaled rigid-body transformation allows analysis of corresponding lung CT scans taken at different times and can serve as a good low-order transformation to initialize non-rigid registration approaches. Two different features are used to compute the scale parameter. The first method uses lung surfaces. The second uses lung volumes. Both approaches are computationally inexpensive and improve the alignment of lung images over rigid registration. The two methods produce different scale parameters and may highlight different functional information about the lungs

    Factors Determining Airway Caliber in Asthma

    No full text

    A one-horse race can have only one winner

    No full text

    The role of heterogeneity in asthma: a structure-to-function perspective

    Get PDF
    Abstract A number of methods have evolved through the years in probing the dysfunction that impacts mechanics and ventilation in asthma. What has been consistently found is the notion of heterogeneity that is not only captured in the frequency dependence of lung mechanics measurements but also rendered on imaging as patchy diffuse areas of ventilation defects. The degree of heterogeneity has been linked to airway hyperresponsiveness, a hallmark feature of asthma. How these heterogeneous constriction patterns lead to functional impairment in asthma have only been recently explored using computational airway tree models. By synthesizing measurements of lung mechanics and advances in imaging, computational airway tree models serve as a powerful engine to accelerate our understanding of the physiologic changes that occur in asthma. This review will be focused on the current state of investigational work on the role of heterogeneity in asthma, specifically exploring the structural and functional relationships

    The difference in ventilation heterogeneity between asthmatic and healthy subjects quantified using hyperpolarized 3He MRI

    No full text
    In this pilot study, algorithms for quantitatively evaluating the distribution and heterogeneity of human ventilation imaged with hyperpolarized (HP) (3)He MRI were developed for the goal of examining structure-function relationships within the asthmatic lung. Ten asthmatic and six healthy human subjects were imaged with HP (3)He MRI before bronchial challenge (pre-MCh), after bronchial challenge (post-MCh), and after a series of deep inspirations (post-DI) following challenge. The acquired images were rigidly coregistered. Local voxel fractional ventilation was computed by setting the sum of the pixel intensity within the lung region in each image to 1 liter of inhaled (3)He mixture. Local ventilation heterogeneity was quantified by computing regional signal coefficient of variation. Voxel fractional ventilation histograms and overall heterogeneity scores were then calculated. Asthmatic subjects had a higher ventilation heterogeneity to begin with (P = 0.025). A methacholine challenge elevated ventilation heterogeneity for all subjects (difference: P = 0.08). After a DI postchallenge, this heterogeneity reversed substantially toward the baseline state for healthy subjects but only minimally in asthmatic subjects. This difference was significant in absolute quantity (difference: P = 0.007) as well as relative to the initial increase (difference: P = 0.03). These findings suggest that constriction heterogeneity is not a characteristic unique to asthmatic airway trees but rather a behavior intrinsic to all airway trees when provoked. Once ventilation heterogeneity is established, it is the lack of reversal following DIs that distinguishes asthmatics from non-asthmatics
    • …
    corecore