22 research outputs found

    Chemically homogenous compounds with antagonistic properties at all α1\alpha_{1}-adrenoceptor subtypes but not β1\beta_{1}-adrenoceptor attenuate adrenaline-induced arrhythmia in rats

    Get PDF
    Studies proved that among all α1-adrenoceptors, cardiac myocytes functionally express only α1A- and α1B-subtype. Scientists indicated that α1A-subtype blockade might be beneficial in restoring normal heart rhythm. Therefore, we aimed to determine the role of α1-adrenoceptors subtypes (i.e. α1A and α1B) in antiarrhythmic effect of six structurally similar derivatives of 2-methoxyphenylpiperazine. We compared the activity of studied compounds with carvedilol, which is β1- and α1-adrenoceptors blocker with antioxidant properties.To evaluate the affinity for adrenergic receptors, we used radioligand methods. We investigated selectivity at α1-adrenoceptors subtypes using functional bioassays. We tested antiarrhythmic activity in adrenaline-induced (20 µg/kg i.v.), calcium chloride-induced (140 and 25 mg/kg i.v.) and barium chloride-induced (32 and 10 mg/kg i.v.) arrhythmia models in rats. We also evaluated the influence of studied compounds on blood pressure in rats, as well as lipid peroxidation. All studied compounds showed high affinity towards α1-adrenoceptors but no affinity for β1 receptors. Biofunctional studies revealed that the tested compounds blocked α1A- stronger than α1B-adrenoceptors, but except for HBK-19 they antagonized α1A-adrenoceptor weaker than α1D-subtype. HBK-19 showed the greatest difference in pA2 values - it blocked α1A-adrenoceptors around sevenfold stronger than α1B subtype. All compounds showed prophylactic antiarrhythmic properties in adrenaline-induced arrhythmia, but only the activity of HBK-16, HBK-17, HBK-18 and HBK-19 (ED50=0.18-0.21) was comparable to that of carvedilol (ED50=0.36). All compounds reduced mortality in adrenaline-induced arrhythmia. HBK-16, HBK-17, HBK-18 and HBK-19 showed therapeutic antiarrhythmic properties in adrenaline-induced arrhythmia. None of the compounds showed activity in calcium chloride- or barium chloride-induced arrhythmias. HBK-16, HBK-17, HBK-18 and HBK-19 decreased heart rhythm at ED84. All compounds significantly lowered blood pressure in normotensive rats. HBK-18 showed the strongest hypotensive properties (the lowest active dose: 0.01 mg/kg). HBK-19 was the only compound in the group, which did not show hypotensive effect at antiarrhythmic doses. HBK-16, HBK-17, HBK-18, HBK-19 showed weak antioxidant properties.Our results indicate that the studied 2-methoxyphenylpiperazine derivatives that possessed stronger α1A-adrenolytic properties (i.e. HBK-16, HBK-17, HBK-18 and HBK-19) were the most compounds in adrenaline-induced arrhythmia. Thus, we suggest that the potent blockade of α1A-receptor subtype is essential to attenuate adrenaline-induced arrhythmia

    Hipotensive activity of new arylpiperazine derivatives of hydantoin after chronic application

    No full text
    Celem niniejszej pracy magisterskiej była ocena aktywności hipotensyjnej nowych arylopiperazynowych pochodnych hydantoiny po podaniu przewlekłym. Przeprowadzone badania farmakologiczne wykazały, że związek LL-9 prowadzi do istotnego spadku ciśnienia skurczowego, nie zmieniając znamiennie ciśnienia rozkurczowego u normotensyjnego szczura. Natomiast pozostałe trzy związki tj.: LL-2, LL-3, LL-4 nie zmieniały istotnie ciśnienia skurczowego i rozkurczowego w czasie dziesięciodniowego podawania, co może świadczyć o ich uroselektywności i potencjalnym zastosowaniu w łagodnym przeroście gruczołu krokowego.The aim of this thesis was the estimation of hipotensive activity of arylpiperazine derivatives of hydantoin after chronic application. Pharmacological researches showed that compound LL-9 caused significant decrease of systolic blood pressure, but does not change diastolic blood pressure of the normotensive rat. Whereas three other compounds: LL-2, LL-3, LL-4 do not change significant systolic and diastolic blood pressure during 10 days of application, what can be a sign of their uroselectivity and potential use in benign prostatic hyperplasia

    What Is “Inflammatory Bowel Disease” & How Can It Be Treated?

    No full text
    Ulcerative colitis and Crohn's disease are chronic diseases of the gastrointestinal tract, which are usually grouped together as inflammatory bowel disease (IBD). Despite many researches, the etiology is still unknown, but it is believed that IBD is caused by a combination of genetic and environmental factors that interact with the immunological system. Many people worldwide (around 4 million) suffer from a form IBD and the incidence of Crohn's disease is still increasing. Aminosalicylates, corticosteroids, immunomodulators, biologic medicines reduce the inflammation, relieve symptoms, prevent flare-ups, but new, more effective drugs with smaller amount of side effects are wanted and examined

    The antiarrhythmic activity of novel pyrrolidin-2-one derivative S-75 in adrenaline-induced arrhythmia

    No full text
    Arrhythmia is a quivering or irregular heartbeat that can often lead to blood clots, stroke, heart failure, and other heart-related complications. The limited efficacy and safety of antiarrhythmic drugs require the design of new compounds. Previous research indicated that pyrrolidin-2-one derivatives possess an affinity for α1-adrenergic receptors. The blockade of α1-adrenoceptor may play a role in restoring normal sinus rhythm; therefore, we aimed to verify the antiarrhythmic activity of novel pyrrolidin-2-one derivative S-75. In this study, we assessed the influence on sodium, calcium, potassium channels, and β1-adrenergic receptors to investigate the mechanism of action of S-75. Lack of affinity for β1-adrenoceptors and weak effects on ion channels decreased the role of these adrenoceptors and channels in the pharmacological activity of S-75. Next, we evaluated the influence of S-75 on normal ECG in rats and isolated rat hearts, and the tested derivative did not prolong the QTc interval, which may confirm the lack of the proarrhythmic potential. We tested antiarrhythmic activity in adrenaline-, aconitine- and calcium chloride-induced arrhythmia models in rats. The studied compound showed prophylactic antiarrhythmic activity in the adrenaline-induced arrhythmia, but no significant activity in the model of aconitine- or calcium chloride-induced arrhythmia. In addition, S-75 was not active in the model of post-reperfusion arrhythmias of the isolated rat hearts. Conversely, the compound showed therapeutic antiarrhythmic properties in adrenaline-induced arrhythmia, reducing post-arrhythmogen heart rhythm disorders, and decreasing animal mortality. Thus, we suggest that the blockade of α1-adrenoceptor might be beneficial in restoring normal heart rhythm in adrenaline-induced arrhythmia

    The antiarrhythmic and hypotensive effects of S-61 and S-73, the Pyrrolidin-2-one derivatives with alpha(1)-adrenolytic properties

    No full text
    Heart rhythm abnormalities are a cause of many deaths worldwide. Unfortunately, the available antiarrhythmic drugs show limited efficacy and proarrhythmic potential. Thus, efforts should be made to search for new, more effective, and safer pharmacotherapies. Several studies suggested that blocking the α(1)-adrenoceptors could restore normal heart rhythm in arrhythmia. In this study, we aimed to assess the antiarrhythmic potential of S-61 and S-73, two novel pyrrolidin-2-one derivatives with high affinity for α(1)-adrenergic receptors. First, using radioligand binding studies, we demonstrated that S-61 and S-73 did not bind with β(1)-adrenoceptors. Next, we assessed whether S-61 and S-73 could protect rats against arrhythmia in adrenaline-, calcium chloride- and aconitine-induced arrhythmia models. Both compounds showed potent prophylactic antiarrhythmic properties in the adrenaline-induced arrhythmia model, but the effect of S-61 was more pronounced. None of the compounds displayed antiarrhythmic effects in calcium chloride- or aconitine-induced arrhythmia models. Interestingly, both derivatives revealed therapeutic antiarrhythmic activity in the adrenaline-induced arrhythmia, diminishing heart rhythm irregularities. Neither S-61 nor S-73 showed proarrhythmic potential in rats. Finally, the compounds decreased blood pressure in rodents. The hypotensive effects were not observed after coadministration with methoxamine, which suggests the α(1)-adrenolytic properties of both compounds. Our results confirm that pyrrolidin-2-one derivatives possess potent antiarrhythmic properties. Given the promising results of our experiments, further studies on pyrrolidin-2-one derivatives might result in the development of a new class of antiarrhythmic drugs

    HBK-10, a compound with α1-Adrenolytic properties, showed antiarrhythmic and hypotensive effects in rats

    No full text
    Arrhythmia, an irregular heartbeat, might be a life-threatening condition but also a risk factor for stroke or worsen the prognosis after myocardial infarction. The limited efficacy and proarrhythmic potential of the available drugs require searching for new, more effective, and safer pharmacotherapies. Studies indicate that the blockade of α(1)-adrenoceptors could be effective in treating heart rhythm abnormalities. In this study, we aimed to assess the antiarrhythmic and hypotensive potential of HBK-10, a novel 2-methoxyphenylpiperazine derivative, as well as its binding to the selected adrenergic receptors. Radioligand binding studies demonstrated that HBK-10 showed a high affinity for α(1) but not for α(2) or β(1) receptors. Next, we evaluated the ability of HBK-10 to protect against an adrenaline-induced arrhythmia in rats. The compound showed potent prophylactic antiarrhythmic properties in this arrhythmia model. Notably, the compound did not show proarrhythmic potential in normotensive rats since it did not influence the ECG parameters at antiarrhythmic doses. Finally, the compound showed hypotensive properties in rats, which were not observed after coadministration with adrenaline, noradrenaline, or methoxamine, which suggests α(1)-adrenolytic properties of HBK-10. Our results confirm that compounds with a 2-methoxyphenylpiperazine group show a high affinity for α(1)-adrenoceptors and a significant antiarrhythmic effect. Given the promising results of our study, further evaluation of HBK-10 is necessary to unravel the mechanisms behind its pharmacological effects and evaluate the safety profile
    corecore