3,292 research outputs found

    Can one reconstruct masked CMB sky?

    Full text link
    The CMB maps obtained by observations always possess domains which have to be masked due to severe uncertainties with respect to the genuine CMB signal. Cosmological analyses ideally use full CMB maps in order to get e.g. the angular power spectrum. There are attempts to reconstruct the masked regions at least at low resolutions, i.e. at large angular scales, before a further analysis follows. In this paper, the quality of the reconstruction is investigated for the ILC (7yr) map as well as for 1000 CMB simulations of the LambdaCDM concordance model. The latter allows an error estimation for the reconstruction algorithm which reveals some drawbacks. The analysis points to errors of the order of a significant fraction of the mean temperature fluctuation of the CMB. The temperature 2-point correlation function C(theta) is evaluated for different reconstructed sky maps which leads to the conclusion that it is safest to compute it on the cut-sky

    Coarse-graining protein energetics in sequence variables

    Full text link
    We show that cluster expansions (CE), previously used to model solid-state materials with binary or ternary configurational disorder, can be extended to the protein design problem. We present a generalized CE framework, in which properties such as energy can be unambiguously expanded in the amino-acid sequence space. The CE coarse grains over nonsequence degrees of freedom (e.g., side-chain conformations) and thereby simplifies the problem of designing proteins, or predicting the compatibility of a sequence with a given structure, by many orders of magnitude. The CE is physically transparent, and can be evaluated through linear regression on the energies of training sequences. We show, as example, that good prediction accuracy is obtained with up to pairwise interactions for a coiled-coil backbone, and that triplet interactions are important in the energetics of a more globular zinc-finger backbone.Comment: 10 pages, 3 figure

    Feasibility and performances of compressed-sensing and sparse map-making with Herschel/PACS data

    Full text link
    The Herschel Space Observatory of ESA was launched in May 2009 and is in operation since. From its distant orbit around L2 it needs to transmit a huge quantity of information through a very limited bandwidth. This is especially true for the PACS imaging camera which needs to compress its data far more than what can be achieved with lossless compression. This is currently solved by including lossy averaging and rounding steps on board. Recently, a new theory called compressed-sensing emerged from the statistics community. This theory makes use of the sparsity of natural (or astrophysical) images to optimize the acquisition scheme of the data needed to estimate those images. Thus, it can lead to high compression factors. A previous article by Bobin et al. (2008) showed how the new theory could be applied to simulated Herschel/PACS data to solve the compression requirement of the instrument. In this article, we show that compressed-sensing theory can indeed be successfully applied to actual Herschel/PACS data and give significant improvements over the standard pipeline. In order to fully use the redundancy present in the data, we perform full sky map estimation and decompression at the same time, which cannot be done in most other compression methods. We also demonstrate that the various artifacts affecting the data (pink noise, glitches, whose behavior is a priori not well compatible with compressed-sensing) can be handled as well in this new framework. Finally, we make a comparison between the methods from the compressed-sensing scheme and data acquired with the standard compression scheme. We discuss improvements that can be made on ground for the creation of sky maps from the data.Comment: 11 pages, 6 figures, 5 tables, peer-reviewed articl

    How well-proportioned are lens and prism spaces?

    Full text link
    The CMB anisotropies in spherical 3-spaces with a non-trivial topology are analysed with a focus on lens and prism shaped fundamental cells. The conjecture is tested that well proportioned spaces lead to a suppression of large-scale anisotropies according to the observed cosmic microwave background (CMB). The focus is put on lens spaces L(p,q) which are supposed to be oddly proportioned. However, there are inhomogeneous lens spaces whose shape of the Voronoi domain depends on the position of the observer within the manifold. Such manifolds possess no fixed measure of well-proportioned and allow a predestined test of the well-proportioned conjecture. Topologies having the same Voronoi domain are shown to possess distinct CMB statistics which thus provide a counter-example to the well-proportioned conjecture. The CMB properties are analysed in terms of cyclic subgroups Z_p, and new point of view for the superior behaviour of the Poincar\'e dodecahedron is found

    Long-Term Variations in the Growth and Decay Rates of Sunspot Groups

    Full text link
    Using the combined Greenwich (1874-1976) and Solar Optical Observatories Network (1977-2009) data on sunspot groups, we study the long-term variations in the mean daily rates of growth and decay of sunspot groups. We find that the minimum and the maximum values of the annually averaged daily mean growth rates are ~52% per day and ~183% per day, respectively, whereas the corresponding values of the annually averaged daily mean decay rates are ~21% per day and ~44% per day, respectively. The average value (over the period 1874-2009) of the growth rate is about 70% more than that of the decay rate. The growth and the decay rates vary by about 35% and 13%, respectively, on a 60-year time-scale. From the beginning of Cycle 23 the growth rate is substantially decreased and near the end (2007-2008) the growth rate is lowest in the past about 100 years.Comment: 1 table, 13 figures, accepted by Solar Physic

    Structural Synthesis for GXW Specifications

    Full text link
    We define the GXW fragment of linear temporal logic (LTL) as the basis for synthesizing embedded control software for safety-critical applications. Since GXW includes the use of a weak-until operator we are able to specify a number of diverse programmable logic control (PLC) problems, which we have compiled from industrial training sets. For GXW controller specifications, we develop a novel approach for synthesizing a set of synchronously communicating actor-based controllers. This synthesis algorithm proceeds by means of recursing over the structure of GXW specifications, and generates a set of dedicated and synchronously communicating sub-controllers according to the formula structure. In a subsequent step, 2QBF constraint solving identifies and tries to resolve potential conflicts between individual GXW specifications. This structural approach to GXW synthesis supports traceability between requirements and the generated control code as mandated by certification regimes for safety-critical software. Synthesis for GXW specifications is in PSPACE compared to 2EXPTIME-completeness of full-fledged LTL synthesis. Indeed our experimental results suggest that GXW synthesis scales well to industrial-sized control synthesis problems with 20 input and output ports and beyond.Comment: The long (including appendix) version being reviewed by CAV'16 program committee. Compared to the submitted version, one author (out of her wish) is moved to the Acknowledgement. (v2) Corrected typos. (v3) Add an additional remark over environment assumption and easy corner case

    CMB Anisotropy of the Poincare Dodecahedron

    Full text link
    We analyse the anisotropy of the cosmic microwave background (CMB) for the Poincare dodecahedron which is an example for a multi-connected spherical universe. We compare the temperature correlation function and the angular power spectrum for the Poincare dodecahedral universe with the first-year WMAP data and find that this multi-connected universe can explain the surprisingly low CMB anisotropy on large scales found by WMAP provided that the total energy density parameter Omega_tot is in the range 1.016...1.020. The ensemble average over the primordial perturbations is assumed to be the scale-invariant Harrison-Zel'dovich spectrum. The circles-in-the-sky signature is studied and it is found that the signal of the six pairs of matched circles could be missed by current analyses of CMB sky maps

    CMB Anisotropy of Spherical Spaces

    Full text link
    The first-year WMAP data taken at their face value hint that the Universe might be slightly positively curved and therefore necessarily finite, since all spherical (Clifford-Klein) space forms M^3 = S^3/Gamma, given by the quotient of S^3 by a group Gamma of covering transformations, possess this property. We examine the anisotropy of the cosmic microwave background (CMB) for all typical groups Gamma corresponding to homogeneous universes. The CMB angular power spectrum and the temperature correlation function are computed for the homogeneous spaces as a function of the total energy density parameter Omega_tot in the large range [1.01, 1.20] and are compared with the WMAP data. We find that out of the infinitely many homogeneous spaces only the three corresponding to the binary dihedral group T*, the binary octahedral group O*, and the binary icosahedral group I* are in agreement with the WMAP observations. Furthermore, if Omega_tot is restricted to the interval [1.00, 1.04], the space described by T* is excluded since it requires a value of Omega_tot which is probably too large being in the range [1.06, 1.07]. We thus conclude that there remain only the two homogeneous spherical spaces S^3/O* and S^3/I* with Omega_tot of about 1.038 and 1.018, respectively, as possible topologies for our Universe.Comment: A version with high resolution sky maps can be obtained at http://www.physik.uni-ulm.de/theo/qc

    Cosmic Topology of Polyhedral Double-Action Manifolds

    Full text link
    A special class of non-trivial topologies of the spherical space S^3 is investigated with respect to their cosmic microwave background (CMB) anisotropies. The observed correlations of the anisotropies on the CMB sky possess on large separation angles surprising low amplitudes which might be naturally be explained by models of the Universe having a multiconnected spatial space. We analysed in CQG 29(2012)215005 the CMB properties of prism double-action manifolds that are generated by a binary dihedral group D^*_p and a cyclic group Z_n up to a group order of 180. Here we extend the CMB analysis to polyhedral double-action manifolds which are generated by the three binary polyhedral groups (T^*, O^*, I^*) and a cyclic group Z_n up to a group order of 1000. There are 20 such polyhedral double-action manifolds. Some of them turn out to have even lower CMB correlations on large angles than the Poincare dodecahedron
    corecore