3 research outputs found

    Sampling, defining, characterising and modelling the rhizosphere - The soils science toolbox

    Get PDF
    International audienceWe review methods and models that help to assess how root activity changes soil properties and affects the fluxes of matter in the soil. Subsections discuss (1) experimental systems including plant treatments in artificial media, studying the interaction of model root and microbial exudates with soil constituents, and microcosms to distinguish between soil compartments differing in root influence, (2) the sampling and characterization of rhizosphere soil and solution, focusing on the separation of soil at differentdistances from roots and the spatially resolved sampling of soil solution, (3) cutting-edge methodologies to study chemical effects in soil, including the estimation of bioavailable element or ion contents (biosensors, diffusive gradients in thin-films), studying the ultrastructure of soil components, localizing elements and determining their chemical form (microscopy, diffractometry, spectroscopy), tracing the compartmentalization of substances in soils (isotope probing, autoradiography), and imaging gradients insitu with micro electrodes or gels or filter papers containing dye indicators, (4) spectroscopic and geophysical methods to study the plants influence on the distribution of water in soils, and (5) the modeling of rhizosphere processes. Macroscopic models with a rudimentary depiction of rhizosphere processes are used to predict water or nutrient requirements by crops and forests, to estimate biogeochemical element cycles, to calculate soil water transport on a profile scale, or to simulate the development of root systems. Microscopic or explanatory models are based on mechanistic or empirical relations that describe processes on a single root or root system scale and/or chemical reactions in soil solution. We conclude that in general we have the tools at hand to assess individual processes on the microscale under rather artificial conditions. Microscopic, spectroscopic and tracer methods to look at processes in small “aliquots” of naturally structured soil seem to step out of their infancy and have become promising tools to better understand the complex interactions between plant roots, soil and microorganisms. On the field scale, while there are promising first results on using non-invasive geophysical methods to assess the plant's influence on soil moisture, there are no such tools in the pipeline to assess the spatial heterogeneity of chemical properties and processes in the field. Here, macroscopic models have to be used, or model results on the microscopic level have to be scaled up to the whole plant or plot scale. Upscaling is recognized as a major challenge

    Structured reporting in oncologic hybrid imaging: a consensus recommendation

    No full text
    Since the clinical introduction of PET/CT in the year of 2001 and PET/MRI in the year of 2010, hybrid imaging-guided precision medicine has become an important component of diagnostic algorithms in oncology. The written report represents the primary mode of communication between the referring physician and both the nuclear medicine physician and the radiologist. Reports have considerable impact on patient management and patient outcome, and serve as a legal documentation of the services provided and the expert impression of the interpreting physician. A high-quality hybrid imaging study should result in a likewise high-quality, structured written report which satisfactorily answers the clinical question of the referring physician. In this manuscript, consensus recommendations for structure and content of oncologic hybrid imaging reports and conclusive impressions are provided. Moreover, exemplary structured reports are provided. The recommendations for structured reporting provided in this document should foster further standardization and harmonization of oncologic reports in the context of hybrid imaging. They should also simplify communication with referring physicians and support both acceptance and appreciation of the clinical value of oncologic hybrid imaging. Citation Format Derlin T, Gatidis S, Krause BJ et al. Konsensusempfehlung zur strukturierten Befunderstellung onkologischer PET-Hybridbildgebung. Nuklearmedizin 2020; 59: DOI:10.1055/a-1176-027
    corecore