55 research outputs found

    Time Scales for transitions between free energy minima of a hard sphere system

    Get PDF
    Time scales associated with activated transitions between glassy metastable states of a free energy functional appropriate for a dense hard sphere system are calculated by using a new Monte Carlo method for the local density variables. We calculate the time the system,initially placed in a shallow glassy minimum of the free energy, spends in the neighborhood of this minimum before making a transition to the basin of attarction of another free energy minimum. This time scale is found to increase with the average density. We find a crossover density near which this time scale increases very sharply and becomes longer than the longest times accessible in our simulation. This scale shows no evidence of dependence on sample size.Comment: 25 pages, Revtex, 6 postscript figures. Will appear in Phys Rev E, March 1996 or s

    Coset Space Dimensional Reduction and Wilson Flux Breaking of Ten-Dimensional N=1, E(8) Gauge Theory

    Full text link
    We consider a N=1 supersymmetric E(8) gauge theory, defined in ten dimensions and we determine all four-dimensional gauge theories resulting from the generalized dimensional reduction a la Forgacs-Manton over coset spaces, followed by a subsequent application of the Wilson flux spontaneous symmetry breaking mechanism. Our investigation is constrained only by the requirements that (i) the dimensional reduction leads to the potentially phenomenologically interesting, anomaly free, four-dimensional E(6), SO(10) and SU(5) GUTs and (ii) the Wilson flux mechanism makes use only of the freely acting discrete symmetries of all possible six-dimensional coset spaces.Comment: 45 pages, 2 figures, 10 tables, uses xy.sty, longtable.sty, ltxtable.sty, (a shorter version will be published in Eur. Phys. J. C

    Nonlinear Hydrodynamics of a Hard Sphere Fluid Near the Glass Transition

    Get PDF
    We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that the system exhibits glassy behavior as evidenced through stretched exponential decay and two-stage relaxation of the density correlation function. The characteristic times grow with increasing density according to the Vogel-Fulcher law. The wavenumber dependence of the kinetics is extensively explored. The connection of our results with experiment, mode coupling theory, and molecular dynamics results is discussed.Comment: 34 Pages, Plain TeX, 12 PostScript Figures (not included, available on request

    Thin accretion disk signatures of slowly rotating black holes in Ho\v{r}ava gravity

    Get PDF
    In the present work, we consider the possibility of observationally testing Ho\v{r}ava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating Kehagias-Sfetsos geometry in Ho\v{r}ava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating Kehagias-Sfetsos solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Ho\v{r}ava gravity models by using astrophysical observations of the emission spectra from accretion disks.Comment: 12 pages, 15 figures. V2: 13 pages, clarifications and discussion added; version accepted for publication in Classical and Quantum Gravit

    The Depolarizing Action of GABA in Cultured Hippocampal Neurons Is Not Due to the Absence of Ketone Bodies

    Get PDF
    Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine “developmental switch” mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults

    Analysis of the coach rollover scenario

    No full text
    A multibody model describing the behaviour of an M3 class coach in a rollover was developed. The model was validated by comparing the numerical results with the results of experimental rollover tests performed within the enhanced coach and bus occupant safety project. Through such numerical model, the approval tests, stated in the ECE66 regulation, were analyzed in depth. The simulations showed that the presence of passengers onboard, not taken into account in the regulation, considerably affects the deformation of the structure. The calculations showed as well that such influence on the deformation of the structure is strongly dependent on the passenger restraint configuration. The injury risk for passengers of coaches in a rollover accident was evaluated through the use of the mathematical model of crash test dummies. The simulations showed that the use of safety belts considerably reduce the injury risk

    Genomic Evolution of Vesicular Stomatitis Virus Strains with Differences in Adaptability ▿ †

    No full text
    Virus strains with a history of repeated genetic bottlenecks frequently show a diminished ability to adapt compared to strains that do not have such a history. These differences in adaptability suggest differences in either the rate at which beneficial mutations are produced, the effects of beneficial mutations, or both. We tested these possibilities by subjecting four populations (two controls and two mutants with lower adaptabilities) to multiple replicas of a regimen of positive selection and then determining the fitnesses of the progeny through time and the changes in the consensus, full-length sequences of 56 genomes. We observed that at a given number of passages, the overall fitness gains observed for control populations were larger than fitness gains in mutant populations. However, these changes did not correlate with differences in the numbers of mutations accumulated in the two types of genomes. This result is consistent with beneficial mutations having a lower beneficial effect on mutant strains. Despite the overall fitness differences, some replicas of one mutant strain at passage 50 showed fitness increases similar to those observed for the wild type. We hypothesized that these evolved, high-fitness mutants may have a lower robustness than evolved, high-fitness controls. Robustness is the ability of a virus to avoid phenotypic changes in the face of mutation. We confirmed our hypothesis in mutation-accumulation experiments that showed a normalized fitness loss that was significantly larger in mutant bottlenecked populations than in control populations
    corecore