881 research outputs found
Conditional Gradient Algorithms for Rank-One Matrix Approximations with a Sparsity Constraint
The sparsity constrained rank-one matrix approximation problem is a difficult
mathematical optimization problem which arises in a wide array of useful
applications in engineering, machine learning and statistics, and the design of
algorithms for this problem has attracted intensive research activities. We
introduce an algorithmic framework, called ConGradU, that unifies a variety of
seemingly different algorithms that have been derived from disparate
approaches, and allows for deriving new schemes. Building on the old and
well-known conditional gradient algorithm, ConGradU is a simplified version
with unit step size and yields a generic algorithm which either is given by an
analytic formula or requires a very low computational complexity. Mathematical
properties are systematically developed and numerical experiments are given.Comment: Minor changes. Final version. To appear in SIAM Revie
Efficient regularized isotonic regression with application to gene--gene interaction search
Isotonic regression is a nonparametric approach for fitting monotonic models
to data that has been widely studied from both theoretical and practical
perspectives. However, this approach encounters computational and statistical
overfitting issues in higher dimensions. To address both concerns, we present
an algorithm, which we term Isotonic Recursive Partitioning (IRP), for isotonic
regression based on recursively partitioning the covariate space through
solution of progressively smaller "best cut" subproblems. This creates a
regularized sequence of isotonic models of increasing model complexity that
converges to the global isotonic regression solution. The models along the
sequence are often more accurate than the unregularized isotonic regression
model because of the complexity control they offer. We quantify this complexity
control through estimation of degrees of freedom along the path. Success of the
regularized models in prediction and IRPs favorable computational properties
are demonstrated through a series of simulated and real data experiments. We
discuss application of IRP to the problem of searching for gene--gene
interactions and epistasis, and demonstrate it on data from genome-wide
association studies of three common diseases.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS504 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Sparse Exploratory Factor Analysis
Sparse principal component analysis is a very active research area in the last decade. It produces component loadings with many zero entries which facilitates their interpretation and helps avoid redundant variables. The classic factor analysis is another popular dimension reduction technique which shares similar interpretation problems and could greatly benefit from sparse solutions. Unfortunately, there are very few works considering sparse versions of the classic factor analysis. Our goal is to contribute further in this direction. We revisit the most popular procedures for exploratory factor analysis, maximum likelihood and least squares. Sparse factor loadings are obtained for them by, first, adopting a special reparameterization and, second, by introducing additional [Formula: see text]-norm penalties into the standard factor analysis problems. As a result, we propose sparse versions of the major factor analysis procedures. We illustrate the developed algorithms on well-known psychometric problems. Our sparse solutions are critically compared to ones obtained by other existing methods
- …
