43 research outputs found

    Herpes Simplex Virus-Induced Epithelial Damage and Susceptibility to Human Immunodeficiency Virus Type 1 Infection in Human Cervical Organ Culture

    Get PDF
    Normal human premenopausal cervical tissue has been used to derive primary cell populations and to establish ex vivo organ culture systems to study infections with herpes simplex virus (HSV-1 or HSV-2) and human immunodeficiency virus type 1 (HIV-1). Infection with either HSV-1 or HSV-2 rapidly induced multinuclear giant cell formation and widespread damage in mucosal epithelial cells. Subsequent exposure of the damaged mucosal surfaces to HIV-1 revealed frequent co-localization of HSV and HIV-1 antigens. The short-term organ culture system provides direct experimental support for the epidemiological findings that pre-existing sexually transmitted infections, including primary and recurrent herpes virus infections at mucosal surfaces, represent major risk factors for acquisition of primary HIV-1 infection. Epithelial damage in combination with pre-existing inflammation, as described here for overtly normal human premenopausal cervix, creates a highly susceptible environment for the initiation and establishment of primary HIV-1 infection in the sub-mucosa of the cervical transformation zone

    Developing the Questionnaire

    Get PDF
    AbstractThis chapter outlines the essential topics for developing and testing a questionnaire for a discrete choice experiment survey. It addresses issues such as the description of the environmental good, pretesting of the survey, incentive compatibility, consequentiality or mitigation of hypothetical bias. For the latter, cheap talk scripts, opt-out reminders or an oath script are discussed. Moreover, the use of instructional choice sets, the identification of protest responses and strategic bidders are considered. Finally, issues related to the payment vehicle and the cost vector design are the subject of this section

    Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes

    Full text link
    Human endurance performance can be predicted from maximal oxygen consumption (VO(2max)), lactate threshold, and exercise efficiency. These physiologic parameters, however, are not wholly exclusive from one another and their interplay is complex. Accordingly, we sought to identify more specific measurements explaining the range of performance among athletes. Out of 150 separate variables we identified 10 principal factors responsible for hematological, cardiovascular, respiratory, musculoskeletal, and neurologic variation in 16 highly trained cyclists. These principal factors were then correlated with a 26 km time trial and test of maximal incremental power output. Average power output during the 26 km time trial was attributed to, in order of importance, oxidative phosphorylation capacity of the m. vastus lateralis (p=0.0005), steady state submaximal blood lactate concentrations (p=0.0017), and maximal leg oxygenation (O(2LEG)) (p=0.0295) accounting for 78% of the variation in time trial performance. Variability in maximal power output, on the other hand, was attributed to total body hemoglobin mass (Hb(mass); p=0.0038), VO(2max) (p=0.0213), and O(2LEG) (p=0.0463). In conclusion: 1) Skeletal muscle oxidative capacity is the primary predictor of time trial performance in highly trained cyclists; 2) The strongest predictor for maximal incremental power output is Hb(mass); and 3) Overall exercise performance (time trial performance + maximal incremental power output) correlates most strongly to measures regarding the capability for oxygen transport, high VO(2max) and Hb(mass), in addition to measures of oxygen utilization, maximal oxidative phosphorylation and electron transport system capacities in the skeletal muscle

    Safety and efficacy of pediatric functional endoscopic sinus surgery for the treatment of pediatric chronic rhinosinusitis

    No full text
    Abstract Objective The objective of this article is to evaluate the effectiveness and safety of pediatric endoscopic sinus surgery for the treatment of pediatric chronic rhinosinusitis (CRS). Patients and methods This study was of a retrospective observational clinical type and was carried in the tertiary referral center. A total of 90 patients with CRS refractory to medical treatment and operated with endoscopic sinus surgery were included in this study. Computed tomography scan of the nose and paranasal sinuses was done for all patients. Sinonasal outcome test-20 German adapted version was used for preoperative and postoperative symptoms evaluation. Results Among these 90 children, there were 62 males and 28 females, with mean age of 12.5 (7–16) years. A total of 84 (93.3%) patients had CRS without nasal polyps, and CRS with nasal polyps was present in the remaining six (6.7%) patients. Nasal obstruction and purulent nasal discharge were the most reported symptoms. The follow-up period ranged from 6 months to 5 years, with a mean of 3.7 years. The overall success of the procedure was 68.8%. The most significant improvement was noticed by patients with nasal obstruction and purulent nasal discharge (90.3 and 88.8%). The least improvement occurred in patients with hyposmia (36.3%). Conclusion Functional endoscopic sinus surgery is a safe and effective procedure in children. Proper preoperative selection of patients is mandatory. Limited surgical intervention is needed in children with control of the disease and preservation of the nasal mucosa. Second-look operation may be needed in some cases. Follow-up is essential for success of the procedure
    corecore