1 research outputs found

    On Size Multipartite Ramsey Numbers for Stars Versus Paths and Cycles

    Full text link
    Let KlΓ—tK_{l\times t} be a complete, balanced, multipartite graph consisting of ll partite sets and tt vertices in each partite set. For given two graphs G1G_1 and G2G_2, and integer jβ‰₯2j\geq 2, the size multipartite Ramsey number mj(G1,G2)m_j(G_1,G_2) is the smallest integer tt such that every factorization of the graph KjΓ—t:=F1βŠ•F2K_{j\times t}:=F_1\oplus F_2 satisfies the following condition: either F1F_1 contains G1G_1 or F2F_2 contains G2G_2. In 2007, Syafrizal et al. determined the size multipartite Ramsey numbers of paths PnP_n versus stars, for n=2,3n=2,3 only. Furthermore, Surahmat et al. (2014) gave the size tripartite Ramsey numbers of paths PnP_n versus stars, for n=3,4,5,6n=3,4,5,6. In this paper, we investigate the size tripartite Ramsey numbers of paths PnP_n versus stars, with all nβ‰₯2n\geq 2. Our results complete the previous results given by Syafrizal et al. and Surahmat et al. We also determine the size bipartite Ramsey numbers m2(K1,m,Cn)m_2(K_{1,m},C_n) of stars versus cycles, for nβ‰₯3,mβ‰₯2n\geq 3,m\geq 2
    corecore