19 research outputs found

    ITO-Free Transparent Organic Solar Cell with Distributed Bragg Reflector for Solar Harvesting Windows

    Get PDF
    We demonstrated an indium tin oxide (ITO)-free, highly transparent organic solar cell with the potential to be integrated into window panes for energy harvesting purposes. A transparent, conductive ZnO/Ag/ZnO multilayer electrode and a Ag:Ca thin film electrode were used in this transparent device as the bottom and top electrode, respectively. To further improve the transmittance of the solar cell, the thickness of the top ZnO layer was investigated both experimentally and with simulations. An average visible transmittance of \u3e60% was reached, with a maximum transmittance of 73% at 556 nm. Both top and bottom illumination of the solar cell generated comparable power conversion efficiencies, which indicates the wide application of this solar cell structure. In addition, we fabricated distributed Bragg reflector mirrors with sputtered SiO2 and TiO2, which efficiently increased the power conversion efficiency over 20% for the solar cells on glass and poly(ethylene terephthalate) (PET) substrates

    Selective quantum Zeno effect of ultracold atom-molecule scattering in dynamic magnetic fields

    Full text link
    We demonstrated that final states of ultracold scattering between atom and molecule can be selectively produced using dynamic magnetic fields of multiple frequencies. The mechanism of the dynamic magnetic field control is based on a generalized quantum Zeno effect for the selected scattering channels. In particular, we use an atom-molecule spin flip scattering to show that the transition to the selected final spin projection of the molecule in the inelastic scattering can be suppressed by dynamic modulation of coupling between the Floquet engineered initial and final states

    Transforming Commercial Textiles and Threads into Sewable and Weavable Electric Heaters

    No full text
    We describe a process to transform commercial textiles and threads into electric heaters that can be cut/sewn or woven to fashion lightweight fabric heaters for local climate control and personal thermal management. Off-the-shelf fabrics are coated with a 1.5 μm thick film of a conducting polymer, poly­(3,4-ethylenedioxythiophene), using an improved reactive vapor deposition method. Changes in the hand feel, weight, and breathability of the textiles after the coating process are imperceptible. The resulting fabric electrodes possess competitively low sheet resistances44 Ω/□ measured for coated bast fiber textiles and 61 Ω/□ measured for coated cotton textilesand act as low-power-consuming Joule heating elements. The electrothermal response of the textile electrodes remain unaffected after cutting and sewing due to the robustness of the conductive coating. Coated, conductive cotton yarns can also be plain-woven into a monolithic fabric heater. A demonstrative circuit design for a soft, lightweight, and breathable thermal glove is provided

    Preliminary Study on the OMOP Joule Balance

    No full text

    Experimental and simulation analysis of bubble deformation in foaming polypropylene

    No full text
    This paper investigates the bubble deformation in bubble growth using a self-made in situ visual injection molding device. The results show that the deformation degree of independent bubbles is kept within 0.015. Under the frame rate of 25 frames per second (FPS), it is found that adjacent bubbles with the same average diameter simultaneously pass through the deformation critical point, while adjacent bubbles with different average diameters can’t pass through the critical deformation point at the same time. The interaction in the process of adjacent bubble growth is simulated by finite element software, radial migration of bubbles is suppressed, the hoop stretch of bubbles is enhanced, and the deformation sequence of adjacent bubbles is determined by bubble radius and bubble pressure. On the basis of the bubble influence zone model and the bubble deformation model, a bubble deformation response model is established, used to reflect adjacent bubbles’ deformation response speed

    Molecular Orientation-Dependent Interfacial Energetics and Built-in Voltage Tuned by a Template Graphene Monolayer

    No full text
    Highly transparent and conductive monolayer graphene was used as a template to tune the crystal orientation of pentacene from generic standing-up (001) to lying-down (022) in neat films. Spatially resolved Kelvin probe force microscopy (KPFM) was used to reveal the energy levels of pentacene thin films grown on substrates with and without the template graphene layer, as well as the energy level alignment in various pentacene-containing organic–organic heterojunctions. A correlation between crystal domain orientation and the work function was directly observed using KPFM. Up to 0.36 eV shifts in work function were observed in neat pentacene films over large areas (>0.5 in.<sup>2</sup>) upon orientation transition, likely due to the transition from Fermi level pinning (standing-up pentacene on ITO) to vacuum level alignment (lying-down pentacene on graphene–ITO). Morphology-induced energy level shifts versus interfacial electronic equilibration effects were disentangled using atomic force microscopy, KPFM, X-ray diffraction, and Raman data for neat pentacene films and pentacene containing heterojunctions on monolayer graphene. The data detailed herein provide a fundamental picture of the major interfacial effects active in optoelectronic devices containing a bare graphene electrode
    corecore