36 research outputs found

    Long-term weight maintenance and cardiovascular risk factors are not different following weight loss on carbohydrate-restricted diets high in either monounsaturated fat or protein in obese hyperinsulinaemic men and women

    Get PDF
    The aim of this study was to determine after 52 weeks whether advice to follow a lower carbohydrate diet, either high in monounsaturated fat or low fat, high in protein had differential effects in a free-living community setting. Following weight loss on either a high monounsaturated fat, standard protein (HMF; 50 % fat, 20 % protein (67 g/d), 30 % carbohydrate) or a high protein, moderate fat (HP) (40 % protein (136 g/d), 30 % fat, 30 % carbohydrate) energy-restricted diet (6000 kJ/d) subjects were asked to maintain the same dietary pattern without intensive dietary counselling for the following 36 weeks. Overall weight loss was 6·2 (sd 7·3) kg (P < 0·01 for time with no diet effect, 7·6 (sd 8·1) kg, HMF v. 4·8 (sd 6·6) kg, HP). In a multivariate regression model predictors of weight loss at the end of the study were sex, age and reported percentage energy from protein (R2 0·22, P < 0·05 for the whole model). Fasting plasma insulin decreased (P < 0·01, with no difference between diets), 13·9 (sd 4·6) to 10·2 (sd 5·2) mIU/l, but fasting plasma glucose was not reduced. Neither total cholesterol nor LDL-cholesterol were different but HDL was higher, 1·19 (sd 0·26) v. 1·04 (sd 0·29) (P < 0·001 for time, no diet effect), while TAG was lower, 1·87 (sd 1·23) v. 2·22 (sd 1·15) mmol/l (P < 0·05 for time, no diet effect). C-reactive protein decreased (3·97 (sd 2·84) to 2·43 (sd 2·29) mg/l, P < 0·01). Food records showed that compliance to the prescribed dietary patterns was poor. After 1 year there remained a clinically significant weight loss and improvement in cardiovascular risk factors with no adverse effects of a high monounsaturated fat diet.Jennifer B. Keogh, Natalie D. Luscombe-Marsh, Manny Noakes, Gary A. Wittert and Peter M. Clifto

    Plasma Free Amino Acid Responses to Intraduodenal Whey Protein, and Relationships with Insulin, Glucagon-Like Peptide-1 and Energy Intake in Lean Healthy Men

    No full text
    This study determined the effects of increasing loads of intraduodenal (ID) dairy protein on plasma amino acid (AA) concentrations, and their relationships with serum insulin, plasma glucagon-like peptide-1 (GLP-1) and energy intake. Sixteen healthy men had concentrations of AAs, GLP-1 and insulin measured in response to 60-min ID infusions of hydrolysed whey protein administered, in double-blinded and randomised order, at 2.1 (P2.1), 6.3 (P6.3) or 12.5 (P12.5) kJ/min (encompassing the range of nutrient emptying from the stomach), or saline control (C). Energy intake was quantified immediately afterwards. Compared with C, the concentrations of 19/20 AAs, the exception being cysteine, were increased, and this was dependent on the protein load. The relationship between AA concentrations in the infusions and the area under the curve from 0 to 60 min (AUC0–60 min) of each AA profile was strong for essential AAs (R2 range, 0.61–0.67), but more variable for non-essential (0.02–0.54) and conditional (0.006–0.64) AAs. The AUC0–60 min for each AA was correlated directly with the AUC0–60 min of insulin (R2 range 0.3–0.6), GLP-1 (0.2–0.6) and energy intake (0.09–0.3) (p &lt; 0.05, for all), with the strongest correlations being for branched-chain AAs, lysine, methionine and tyrosine. These findings indicate that ID whey protein infused at loads encompassing the normal range of gastric emptying increases plasma concentrations of 19/20 AAs in a load-dependent manner, and provide novel information on the close relationships between the essential AAs, leucine, valine, isoleucine, lysine, methionine, and the conditionally-essential AA, tyrosine, with energy intake, insulin and GLP-1

    Palmitic Acid, but Not Lauric Acid, Induces Metabolic Inflammation, Mitochondrial Fragmentation, and a Drop in Mitochondrial Membrane Potential in Human Primary Myotubes

    No full text
    The chain length of saturated fatty acids may dictate their impact on inflammation and mitochondrial dysfunction, two pivotal players in the pathogenesis of insulin resistance. However, these paradigms have only been investigated in animal models and cell lines so far. Thus, the aim of this study was to compare the effect of palmitic (PA) (16:0) and lauric (LA) (12:0) acid on human primary myotubes mitochondrial health and metabolic inflammation. Human primary myotubes were challenged with either PA or LA (500 μM). After 24 h, the expression of interleukin 6 (IL-6) was assessed by quantitative polymerase chain reaction (PCR), whereas Western blot was used to quantify the abundance of the inhibitor of nuclear factor κB (IκBα), electron transport chain complex proteins and mitofusin-2 (MFN-2). Mitochondrial membrane potential and dynamics were evaluated using tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and immunocytochemistry, respectively. PA, contrarily to LA, triggered an inflammatory response marked by the upregulation of IL-6 mRNA (11-fold; P < 0.01) and a decrease in IκBα (32%; P < 0.05). Furthermore, whereas PA and LA did not differently modulate the levels of mitochondrial electron transport chain complex proteins, PA induced mitochondrial fragmentation (37%; P < 0.001), decreased MFN-2 (38%; P < 0.05), and caused a drop in mitochondrial membrane potential (11%; P < 0.01) compared to control, with this effect being absent in LA-treated cells. Thus, LA, as opposed to PA, did not trigger pathogenetic mechanisms proposed to be linked with insulin resistance and therefore represents a healthier saturated fatty acid choice to potentially preserve skeletal muscle metabolic health

    Dairy Intake Enhances Body Weight and Composition Changes during Energy Restriction in 18–50-Year-Old Adults—A Meta-Analysis of Randomized Controlled Trials

    No full text
    Background/Aims: A meta-analysis of randomized controlled trials (RCTs) was performed to investigate the effects of dairy food or supplements during energy restriction on body weight and composition in 18–50-year-old. Methods: RCTs ≥ 4 weeks comparing the effect of dairy consumption (whole food or supplements) with control diets lower in dairy during energy restriction on body weight, fat and lean mass were identified by searching MEDLINE, EMBASE, Pubmed, Cochrane Central and World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) until March 2016. Reports were identified and critically appraised in duplicate. Data were pooled using random-effects meta-analysis. Chi2- and I2-statistics indicated heterogeneity. Dose effect was assessed using meta-regression analysis. GRADE guidelines were used to rate the quality (QR) of the evidence considering risk of bias, inconsistency, indirectness, imprecision, publication bias and effect estimates. Results: 27 RCTs were reviewed. Participants consumed between 2 and 4 standard servings/day of dairy food or 20–84 g/day of whey protein compared to low dairy control diets, over a median of 16 weeks. A greater reduction in body weight (−1.16 kg [−1.66, −0.66 kg], p &lt; 0.001, I2 = 11%, QR = high, n = 644) and body fat mass (−1.49 kg [−2.06, −0.92 kg], p &lt; 0.001, I2 = 21%, n = 521, QR = high) were found in studies largely including women (90% women). These effects were absent in studies that imposed resistance training (QR = low-moderate). Dairy intake resulted in smaller loss of lean mass (all trials pooled: 0.36 kg [0.01, 0.71 kg], p = 0.04, I2 = 64%, n = 651, QR = moderate). No between study dose-response effects were seen. Conclusions: Increased dairy intake as part of energy restricted diets resulted in greater loss in bodyweight and fat mass while attenuating lean mass loss in 18–50-year-old adults. Further research in males is needed to investigate sex effects

    Taste sensitivity for monosodium glutamate and an increased liking of dietary protein

    No full text
    The aim of the present study was to determine individuals' taste threshold for monosodium glutamate (MSG) alone and in combination with inosine 5′-monophosphate (IMP-5) and to examine if this threshold was related to an increase in sensory properties (including pleasantness of taste) and/or to one's preference for dietary protein over carbohydrate and fat. Using the triangle tasting method, the taste threshold was determined for thirty-six women and twenty-four men. Thresholds varied from zero to infinite as determined using a clear soup with added MSG in the concentration range of 0·1 to 0·8 % (w/w) MSG. Subjects rated fourteen sensory properties of the soup and also their ‘liking’, ‘eating frequency’ and ‘preference’ of twenty-two common high-protein, high-carbohydrate and high-fat food items. The taste threshold (and therefore sensitivity) of MSG was lowered from 0·33 (sem 0·24) to 0·26 (sem 0·22) % MSG when 0·25 % (w/w) IMP-5 was added. None of the sensory properties assessed was associated with the taste threshold of MSG ± 0·25 % IMP-5 in the overall study population. However, the taste descriptor ‘meatiness’ was associated with the threshold data for individuals who could taste concentrations of ≤ 0·4 % MSG. ‘Liking’ and ‘preference’ scores for protein were found to be related to the threshold of MSG ± 0·25 % IMP-5. From this study population we conclude that the taste threshold of MSG in combination with IMP-5 does appear to predict one's ‘liking’ of as well as ‘preference’ for high-protein foods.Natalie D. Luscombe-Marsh, Astrid J. P. G. Smeets and Margriet S. Westerterp-Planteng

    The EXPRESS Study: Exercise and Protein Effectiveness Supplementation Study supporting autonomy in community dwelling frail older people‐study protocol for a randomized controlled pilot and feasibility study

    No full text
    Abstract Background Research has repeatedly demonstrated that exercise has a positive impact on physical function and is beneficial in the treatment of physical frailty. However, an even more effective strategy for managing physical frailty might be the combination of multicomponent exercise with the intake of high-quality protein supplements, but the efficacy remains unclear for older adults who are already pre-frail and frail. The aim is to examine the feasibility of recruiting frail older adults to participate in a trial designed to determine the potential effects of a 6-month exercise and nutrition intervention on physical function. The feasibility objectives will include frail older peoples’ compliance, the safety and tolerability of the trial, the estimation of estimates to aid sample size calculation, and the potential efficacy. Primary outcomes for the main trial will include gait speed, grip strength and physical performance. Secondary outcomes will include frailty status, muscle mass, nutritional intake, physical activity levels, cognitive performance and quality of life. Methods/design A randomised, parallel, control pilot and feasibility study will be conducted. All participants will be randomly assigned to either (a) an exercise program + high-quality protein supplement or (b) an exercise program + low-quality protein supplement. Both protein supplements will be matched closely in colour, flavour and packaging so that both the participants and the research staff are blinded. The exercise program will be the same in both groups. Assessments will be conducted at baseline and at 3 and 6 months and include gait speed, grip strength, the Short Physical Performance Battery, Timed Up and Go Test, FRAIL Screen, bioelectrical impedance analyses, 24-h dietary recall, Katz Activities of Daily Living, Lawton Instrumental Activities of Daily Living, the Trail Making Test, Short Form Health Survey-36, and 1 week accelerometer quantification. The data will be analysed using an ANCOVA model. Discussion This study is expected to provide much needed insight into the feasibility of recruiting and retaining frail older adults into community-based intervention programs, while providing knowledge relating to the safety, tolerability and benefits of a combined exercise and protein supplement program designed to halt or reverse the transition of physical frailty in the community. If shown to be effective, this strategy could be included in the best practice clinical guidelines for community-dwelling older adults who are pre-frail or frail. Trial registration Australian New Zealand Clinical Trials Registry, ACTRN1261600052142

    Ageing Is Associated with Decreases in Appetite and Energy Intake—A Meta-Analysis in Healthy Adults

    Get PDF
    It is not well recognized that in the elderly weight loss is more common than weight gain. The aim of this analysis was to determine the effect of ageing on appetite (hunger/fullness) and energy intake, after overnight fasting and in a postprandial state, by meta-analyses of trials that included at least two age groups (&gt;18 years). We hypothesized that appetite and energy intake would be less in healthy older compared with younger adults. Following a PubMed-database systematic search up to 30 June 2015, 59 studies were included in the random-effects-model meta-analyses. Energy intake was 16%–20% lower in older (n = 3574/~70 years/~71 kg/~25 kg/m2) than younger (n = 4111/~26 years/~69 kg/~23 kg/m2) adults (standardized mean difference: −0.77 (95% confidence interval −0.90 to −0.64)). Hunger was 25% (after overnight fasting; weighted mean difference (WMD): −17 (−22 to −13) mm) to 39% (in a postprandial state; WMD: −14 (−19 to −9) mm) lower, and fullness 37% (after overnight fasting; WMD: 6 mm (95% CI: 1 to 11 mm)) greater in older than younger adults. In conclusion, appetite and energy intake are less in healthy older than younger adults, suggesting that ageing per se affects food intake

    Serve Size and Estimated Energy and Protein Contents of Meals Prepared by ‘Meals on Wheels’ South Australia Inc.: Findings from a Meal Audit Study

    Get PDF
    An audit of ‘standard’ (STD) and ‘energy and protein fortified’ (HEHP) meals from Meals on Wheels (MOW) South Australia’s summer menu was conducted to evaluate the consistency, and serve size and nutrient contents, of their menu items. Twenty soups, 20 mains and 20 desserts from each of the STD and HEHP menus were prepared at the MOW South Australia’s kitchen and delivered to three ‘sham(dummy)-clients’ over a 5-week period. Each meal component was weighed in triplicate, to the nearest gram, the variation within the serve weight was calculated, and the overall energy and protein content of each meal was determined using FoodWorks (Xyris Software, Highgate Hill, Queensland, Australia). On average, the variability for soups and mains was ≤6% and for desserts was ≤10% and although the measured serve sizes of the MOW meals were consistently smaller than prescribed serve size, the differences were minor. As a percentage of recommended daily intakes (RDIs) for adults aged over 60 years, we calculated that the STD meals contained 21–39% for energy and 42–63% for protein while the HEHP meals contained 29–55% for energy and 46–69% for protein. These findings demonstrate that MOW meals currently meet the voluntary meal guidelines for energy and protein
    corecore