21 research outputs found

    Locomotion and muscle mass measures in a murine model of collagen-induced arthritis

    Get PDF
    Background: Rheumatoid arthritis (RA) is characterized by chronic poly-arthritis, synovial hyperplasia, erosive synovitis, progressive cartilage and bone destruction accompanied by a loss of body cell mass. This loss of cell mass, known as rheumatoid cachexia, predominates in the skeletal muscle and can in part be explained by a decreased physical activity. The murine collagen induced arthritis (CIA) model has been proven to be a useful model in RA research since it shares many immunological and pathological features with human RA. The present study explored the interactions between arthritis development, locomotion and muscle mass in the CIA model. Methods: CIA was induced in male DBA/1 mice. Locomotion was registered at different time points by a camera and evaluated by a computerized tracing system. Arthritis severity was detected by the traditionally used semi-quantitative clinical scores. The muscle mass of the hind-legs was detected at the end of the study by weighing. A methotrexate (MTX) intervention group was included to study the applicability of the locomotion and muscle mass for testing effectiveness of interventions in more detail. Results: There is a strong correlation between clinical arthritis and locomotion. The correlations between muscle mass and locomotion or clinical arthritis were less pronounced. MTX intervention resulted in an improvement of disease severity accompanied by an increase in locomotion and muscle mass. Conclusion: The present data demonstrate that registration of locomotion followed by a computerized evaluation of the movements is a simple non invasive quantitative method to define disease severity and evaluate effectiveness of therapeutic agents in the CIA model.

    Low CD4/CD8 T-Cell Ratio Associated with Inflammatory Arthropathy in Human T-Cell Leukemia Virus Type I Tax Transgenic Mice

    Get PDF
    Human T-cell leukemia virus type I (HTLV-1) can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL) as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice.Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble those in HAM/TSP patients rather than those in rheumatoid arthritis patients

    CD4(+) CD25(+) T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis

    No full text
    CD4(+) CD25(+) regulatory T (T(reg)) cells play a critical role in the maintenance of peripheral tolerance and the prevention of autoimmunity. In the present study, we have explored the characteristics of CD4(+) CD25(+) T(reg) cells in patients with rheumatoid arthritis (RA). The frequency and phenotype of CD4(+) CD25(+) T cells in paired samples of synovial fluid (SF) and peripheral blood (PB) from patients with RA and PB from normal controls were analysed. An increased frequency of CD4+ cells T cells expressing CD25 was detected in SF compared to PB from patients with RA. No significant difference was observed in the numbers of CD4(+) CD25(+) T cells in PB from patients and controls. SF CD4(+) CD25(+) T cells expressed high levels of CTLA-4 (both surface and intracellular), GITR and OX40, as well as Foxp3 transcripts. Functionally, SF CD4(+) CD25(+) T cells were impaired in their proliferative responses and could suppress the proliferation of their CD4(+) CD25(–) counterparts. In conclusion, these data demonstrate that CD4(+) CD25(+) T(reg) cells, with the potential to regulate the function of effector T cells and antigen-presenting cells, accumulate in the synovium of patients with RA

    In Vivo models for inflammatory arthritis

    No full text
    In vivo mouse models of inflammatory arthritis are extensively used to investigate pathogenic mechanisms governing inflammation-driven joint damage. Two commonly utilized models include collagen-induced arthritis (CIA) and methylated bovine serum albumin (mBSA) antigen-induced arthritis (AIA). These offer unique advantages for modeling different aspects of human disease. CIA involves breach of immunological tolerance resulting in systemic autoantibody-driven arthritis, while AIA results in local resolving inflammatory flares and articular T cell-mediated damage. Despite limitations that apply to all animal models of human disease, CIA and AIA have been instrumental in identifying pathogenic mediators, immune cell subsets and stromal cell responses that determine disease onset, progression, and severity. Moreover, these models have enabled investigation of disease phases not easily studied in patients and have served as testing beds for novel biological therapies, including cytokine blockers and small molecule inhibitors of intracellular signaling that have revolutionized rheumatoid arthritis treatment
    corecore