26 research outputs found

    Dendritic Cell and T Cell Crosstalk in Liver Fibrogenesis and Hepatocarcinogenesis: Implications for Prevention and Therapy of Liver Cancer

    Get PDF
    Liver fibrosis is a chronic, highly prevalent disease that may progress to cirrhosis and substantially increases the risk for development of hepatocellular carcinoma (HCC). Fibrotic livers are characterized by an inflammatory microenvironment that is composed of various immunologically active cells, including liver-resident populations (e.g., Kupffer cells, hepatic stellate cells and sinusoidal endothelium) and infiltrating leukocytes (e.g., monocytes, monocyte-derived macrophages, neutrophils and lymphocytes). While inflammatory injury drives both fibrogenesis and carcinogenesis, the tolerogenic microenvironment of the liver conveys immunosuppressive effects that encourage tumor growth. An insufficient crosstalk between dendritic cells (DCs), the professional antigen presenting cells, and T cells, the efficient anti-tumor effector cells, is one of the main mechanisms of HCC tumor tolerance. The meticulous analysis of patient samples and mouse models of fibrosis-HCC provided in-depth insights into molecular mechanisms of immune interactions in liver cancer. The therapeutic modulation of this multifaceted immunological response, e.g., by inhibiting immune checkpoint molecules, in situ vaccination, oncolytic viruses or combinations thereof, is a rapidly evolving field that holds the potential to improve the outcome of patients with HCC. This review aims to highlight the current understanding of DC-T cell interactions in fibrogenesis and hepatocarcinogenesis and to illustrate the potentials and pitfalls of therapeutic clinical translation

    Impact of Angiogenesis- and Hypoxia-Associated Polymorphisms on Tumor Recurrence in Patients with Hepatocellular Carcinoma Undergoing Surgical Resection

    Get PDF
    Simple Summary: Hepatocellular carcinoma remains a leading cause of cancer-related death and the most common primary hepatic malignancy in the Western hemisphere. Previous research found that angiogenesis-related cytokines and elevated levels of interleukin 8 and vascular endothelial growth factor (VEGF) shorten the expected time of survival. Moreover, factors of tumor angiogenesis- and hypoxia-driven signaling pathways are already associated with worse outcome in disease-free survival in several tumor entities. Our study investigates the prognosis of hepatocellular carcinoma patients based on a selection of ten different single-nucleotide polymorphisms from angiogenesis, carcinogenesis, and hypoxia pathways. Our study with 127 patients found supporting evidence that polymorphisms in angiogenesis-associated pathways corelate with disease-free survival and clinical outcome in patients with hepatocellular carcinoma. Abstract: Tumor angiogenesis plays a pivotal role in hepatocellular carcinoma (HCC) biology. Identifying molecular prognostic markers is critical to further improve treatment selection in these patients. The present study analyzed a subset of 10 germline polymorphisms involved in tumor angiogenesis pathways and their impact on prognosis in HCC patients undergoing partial hepatectomy in a curative intent. Formalin-fixed paraffin-embedded (FFPE) tissues were obtained from 127 HCC patients at a German primary care hospital. Genomic DNA was extracted, and genotyping was carried out using polymerase chain reaction (PCR)-restriction fragment length polymorphism-based protocols. Polymorphisms in interleukin-8 (IL-8) (rs4073; p = 0.047, log-rank test) and vascular endothelial growth factor (VEGF C + 936T) (rs3025039; p = 0.045, log-rank test) were significantly associated with disease-free survival (DFS). After adjusting for covariates in the multivariable model, IL-8 T-251A (rs4073) (adjusted p = 0.010) and a combination of "high-expression" variants of rs4073 and rs3025039 (adjusted p = 0.034) remained significantly associated with DFS. High-expression variants of IL-8 T-251A may serve as an independent molecular marker of prognosis in patients undergoing surgical resection for HCC. Assessment of the patients' individual genetic risks may help to identify patient subgroups at high risk for recurrence following curative-intent surgery

    Treatment Strategies for Hepatocellular Carcinoma : A Multidisciplinary Approach

    No full text
    Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and its mortality is third among all solid tumors, behind carcinomas of the lung and the colon. Despite continuous advancements in the management of this disease, the prognosis for HCC remains inferior compared to other tumor entities. While orthotopic liver transplantation (OLT) and surgical resection are the only two curative treatment options, OLT remains the best treatment strategy as it not only removes the tumor but cures the underlying liver disease. As the applicability of OLT is nowadays limited by organ shortage, major liver resections—even in patients with underlying chronic liver disease—are adopted increasingly into clinical practice. Against the background of the oftentimes present chronical liver disease, locoregional therapies have also gained increasing significance. These strategies range from radiofrequency ablation and trans-arterial chemoembolization to selective internal radiation therapy and are employed in both curative and palliative intent, individually, as a bridging to transplant or in combination with liver resection. The choice of the appropriate treatment, or combination of treatments, should consider the tumor stage, the function of the remaining liver parenchyma, the future liver remnant volume and the patient’s general condition. This review aims to address the topic of multimodal treatment strategies in HCC, highlighting a multidisciplinary treatment approach to further improve outcome in these patients

    In Situ Vaccination as a Strategy to Modulate the Immune Microenvironment of Hepatocellular Carcinoma

    Get PDF
    Hepatocellular Carcinoma (HCC) is a highly prevalent malignancy that develops in patients with chronic liver diseases and dysregulated systemic and hepatic immunity. The tumor microenvironment (TME) contains tumor-associated macrophages (TAM), cancer-associated fibroblasts (CAF), regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) and is central to mediating immune evasion and resistance to therapy. The interplay between these cells types often leads to insufficient antigen presentation, preventing effective anti-tumor immune responses. In situ vaccines harness the tumor as the source of antigens and implement sequential immunomodulation to generate systemic and lasting antitumor immunity. Thus, in situ vaccines hold the promise to induce a switch from an immunosuppressive environment where HCC cells evade antigen presentation and suppress T cell responses towards an immunostimulatory environment enriched for activated cytotoxic cells. Pivotal steps of in situ vaccination include the induction of immunogenic cell death of tumor cells, a recruitment of antigen-presenting cells with a focus on dendritic cells, their loading and maturation and a subsequent cross-priming of CD8+ T cells to ensure cytotoxic activity against tumor cells. Several in situ vaccine approaches have been suggested, with vaccine regimens including oncolytic viruses, Flt3L, GM-CSF and TLR agonists. Moreover, combinations with checkpoint inhibitors have been suggested in HCC and other tumor entities. This review will give an overview of various in situ vaccine strategies for HCC, highlighting the potentials and pitfalls of in situ vaccines to treat liver cancer

    Left- versus right-sided hepatectomy with hilar en-bloc resection in perihilar cholangiocarcinoma

    No full text
    BACKGROUND: Major liver resections with portal vein resection (PVR) have emerged as the preferred treatment for patients with perihilar cholangiocarcinoma (pCCA). Whether the resection of the liver should be preferably performed as left- (LH) or right-sided hepatectomy (RH) with or without hilar en-bloc technique is still subject of ongoing debate. METHODS: Between 2011 and 2016, 91 patients with pCCA underwent surgery in curative intent at our institution. Perioperative, pathological and survival data from all consecutive patients undergoing hilar en-bloc resection for pCCA were analyzed retrospectively. Patients undergoing hepatoduodenectomy (n = 8) or ALPPS (Associating liver partition and portal vein ligation for staged hepatectomy) (n = 2) were excluded from the analysis. RESULTS: Tumor grading, microvascular invasion, lymphovascular invasion, N-category, T-category, R-status and UICC-tumor staging were similar in the RH (n = 45) and LH (n = 36) groups. Perioperative morbidity and mortality were higher after RH compared to LH (mortality: 15.6% (7/45) vs. 8.3% (3/36) p = 0.003). Three-year (62% vs. 51%) and the 5-year OS (30% vs. 46%) were comparable between LH and RH groups respectively (p = 0.519, log rank). CONCLUSIONS: The present study supports the concept of surgically aggressive therapy in pCCA. LH and RH hilar en-bloc resection demonstrate a comparable long-term survival, suggesting that LH hilar en-bloc resections are feasible and safe in high-volume centers

    Genetic polymorphisms in interleukin-1β (rs1143634) and interleukin-8 (rs4073) are associated with survival after resection of intrahepatic cholangiocarcinoma

    No full text
    Abstract Intrahepatic cholangiocarcinoma (iCCA) is a rare, understudied primary hepatic malignancy with dismal outcomes. Aiming to identify prognostically relevant single-nucleotide polymorphisms, we analyzed 11 genetic variants with a role in tumor-promoting inflammation (VEGF, EGF, EGFR, IL-1B, IL-6, CXCL8 (IL-8), IL-10, CXCR1, HIF1A and PTGS2 (COX-2) genes) and their association with disease-free (DFS) and overall survival (OS) in patients undergoing curative-intent surgery for iCCA. Genomic DNA was isolated from 112 patients (64 female, 48 male) with iCCA. Germline polymorphisms were analyzed with polymerase chain reaction-restriction fragment length polymorphism protocols. The IL-1B +3954 C/C (73/112, hazard ratio (HR) = 1.735, p = 0.012) and the IL-8 -251 T/A or A/A (53/112 and 16/112, HR = 2.001 and 1.1777, p = 0.026) genotypes were associated with shorter OS in univariable and multivariable analysis. The IL-1B +3954 polymorphism was also associated with shorter DFS (HR = 1.983, p = 0.012), but this effect was not sustained in the multivariable model. A genetic risk model of 0, 1 and 2 unfavorable alleles was established and confirmed in multivariable analysis. This study supports the prognostic role of the IL-1B C+3954T and the IL-8 T-251A variant as outcome markers in iCCA patients, identifying patient subgroups at higher risk for dismal clinical outcomes
    corecore