42 research outputs found
Comparative Effects of Silver Nanoparticles, Sucrose and Sodium Chloride as Osmotic Solutions for Tomato Slices: Antioxidant Activity, Microbial Quality and Modelling with Polynomial Regression Model
This study has reported comparative effects of silver nanoparticles (AgNPs), sucrose and sodium chloride as osmotic solutions on antioxidant activity and microbial quality of 10 mm tomato slices. 40 g of tomato slices were dehydrated osmotically (OD) at different temperatures (60, 70 and 80 °C) and time (30, 60, 90, 120 150 and 180 min).Water loss, solid impregnation, water and solid diffusivities of tomato slices were found to increase with increase in solution temperatures and concentrations with AgNPs having the greatest influence. Antioxidant activities using 2,2-diphenyl-1-picrylhydrazyl increased with increase in solution concentrations but decreased with increase in temperature. Three-wayANOVA(R2=0.998) revealed additive statistically significant effects of osmotic agents, concentrations and temperatures on antioxidant activity; F(8,54)=67.854,P=0.00. Polynomial regression analysis with response surface methodology validated experiments such that for each unit increase in concentration and temperature, antioxidant activity increased with good coefficients of determination; sucrose (R2 = 0.87), NaCl, (R2 = 0.89) andAgNPs (R2 = 0.91). Potato dextrose and nutrient agars were used for isolating and identifying microorganisms in OD tomato slices. Tomato slices dehydrated with AgNPs had the highest microbial inhibition of fungi with growth occurring after 7 days, unlike in treatments with sucrose and NaCl where fungal growth appeared after 2 and 5 days, respectively. Aspergillus niger was the most prevalent fungus. It can be concluded that AgNPs may serve as a viable means to dehydrate and preserve tomatoes without loss of antioxidant activity.Keywords: Osmotic dehydration, polynomial regression, response surface, antioxidant activity, three-way ANOVA, silver nanoparticles
Phytomediated stress modulates antioxidant status, induces overexpression of CYP6M2, Hsp70, α-esterase, and suppresses the ABC transporter in Anopheles gambiae (sensu stricto) exposed to Ocimum tenuiflorum extracts.
The incorporation of phytoactive compounds in the management of malarial vectors holds promise for the development of innovative and efficient alternatives. Nevertheless, the molecular and physiological responses that these bioactive substances induce remain underexplored. This present study investigated the toxicity of different concentrations of aqueous and methanol extracts of Ocimum tenuiflorum against larvae of Anopheles gambiae (sensu stricto) and unraveled the possible underlying molecular pathways responsible for the observed physiological effects. FTIR and GCMS analyses of phytoactive compounds in aqueous and methanol crude extracts of O. tenuiflorum showed the presence of OH stretching vibration, C = C stretching modes of aromatics and methylene rocking vibration; ring deformation mode with high levels of trans-β-ocimene, 3,7-dimethyl-1,3,6-octatriene in aqueous extract and 4-methoxy-benzaldehyde, 1,3,5-trimethyl-cyclohexane and o-cymene in methanol extract. The percentage mortality upon exposure to methanol and aqueous extracts of O. tenuiflorum were 21.1% and 26.1% at 24 h, 27.8% and 36.1% at 48 h and 36.1% and 45% at 72 h respectively. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR), down-regulation of ABC transporter, overexpression of CYP6M2, Hsp70, and α-esterase, coupled with significantly increased levels of SOD, CAT, and GSH, were observed in An. gambiae (s.s.) exposed to aqueous and methanol extracts of O. tenuiflorum as compared to the control. Findings from this study have significant implications for our understanding of how An. gambiae (s.s.) larvae detoxify phytoactive compounds
Bioaccumulation of Silver and Impairment of Vital Organs in Clarias gariepinus from Co-Exposure to Silver Nanoparticles and Cow Dung Contamination
Novel biosynthesized silver nanoparticles from cobweb as adsorbent for Rhodamine B: equilibrium isotherm, kinetic and thermodynamic studies
Abstract This study has investigated the adsorption of Rhodamine B (Rh-B) dye on novel biosynthesized silver nanoparticles (AgNPs) from cobweb. The effects of contact time, initial pH, initial dye concentration, adsorbent dosage and temperature were studied on the removal of Rh-B and they significantly affected its uptake. Adsorption isotherms were evaluated using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The adsorption process was best described by Langmuir isotherm with R 2 of 0.9901, indicating monolayer adsorption. The maximum adsorption capacity (q max) of 59.85 mg/g showed that it has relatively high performance, while adsorption intensity showed a favourable adsorption process. Pseudo-second-order kinetics fitted best the rate of adsorption and intra-particle diffusion revealed both surface adsorption and intra-particle diffusion-controlled adsorption process. Negative values of thermodynamic parameters (∆H°, ∆S° and ∆G°) indicated an exothermic and spontaneous adsorption process. The mean sorption energy (E) and activation energy (E a) suggested the uptake of Rh-B onto AgNPs was chemical in nature (chemosorption)
Comparative effects of silver nanoparticles, sucrose and sodium chloride as osmotic solutions for tomato slices: antioxidant activity, microbial quality and modelling with polynomial regression model
Chemical components retention and modelling of antioxidant activity using neural networks in oven dried tomato slices with and without osmotic dehydration pre-treatment
Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time
This study investigated the influence of drying temperature, and time on antioxidant activity, phenolic, flavonoid, lycopene and β – carotene contents of tomato slices. It also evaluated the influence of drying process on drying kinetics, moisture diffusivity and activation energy. Oven processed tomato slices had temperature-dependent significant increase in antioxidant activity at 30 and 60 min, phenolic from 30 to 120 min and lycopene contents from 120 to 300 min. Significantly decreased contents of flavonoid and β – carotene were obtained for oven processed tomato slices with increasing drying temperature and time. Page model accurately predicted the drying process of tomato slices. Similarity between experimentally determined moisture ratio and Page predicted moisture ratio was obtained with high correlation (R2 = 0.9986). Effective moisture diffusivities indicated that drying process of tomato slices was temperature dependent while Arrhenius equation explained the relationship between activation energy and temperature. Keywords: Page model, Drying temperature, Phytochemicals, Moisture diffusivity, Tomato slice
