18 research outputs found
Ceruloplasmin/Transferrin Ratio Changes in Alzheimer's Disease
The link between iron and Alzheimer's disease (AD) has been mainly investigated with a focus on the local accumulation of this metal in specific areas of the brain that are critical for AD. In the present study, we have instead looked at systemic variations of markers of iron metabolism. We measured serum levels of iron, ceruloplasmin, and transferrin and calculated the transferrin saturation and the ceruloplasmin to transferrin ratio (Cp/Tf). Cp/Tf and transferrin saturation increased in AD patients. Cp/Tf ratios also correlated positively with peroxide levels and negatively with serum iron concentrations. Elevated values of ceruloplasmin, peroxides, and Cp/Tf inversely correlated with MMSE scores. Isolated medial temporal lobe atrophy positively correlated with Cp/Tf and negatively with serum iron. All these findings indicate that the local iron accumulation found in brain areas critical for AD should be viewed in the frame of iron systemic alterations
MRI-Guided Regional Personalized Electrical Stimulation in Multisession and Home Treatments
The shape and position of the electrodes is a key factor for the efficacy of transcranial electrical stimulations (tES). We have recently introduced the Regional Personalized Electrode (RePE), a tES electrode fitting the personal cortical folding, that has been able to differentiate the stimulation of close by regions, in particular the primary sensory (S1) and motor (M1) cortices, and to personalize tES onto such an extended cortical district. However, neuronavigation on individual brain was compulsory for the correct montage. Here, we aimed at developing and testing a neuronavigation-free procedure for easy and quick positioning RePE, enabling multisession RePE-tES at home. We used off-line individual MRI to shape RePE via an ad-hoc computerized procedure, while an ad-hoc developed Adjustable Helmet Frame (AHF) was used to properly position it in multisession treatments, even at home. We used neuronavigation to test the RePE shape and position obtained by the new computerized procedure and the re-positioning obtained via the AHF. Using Finite Element Method (FEM) model, we also estimated the intra-cerebral current distribution induced by transcranial direct current stimulation (tDCS) comparing RePE vs. non-RePE with fixed reference. Additionally, we tested, using FEM, various shapes, and positions of the reference electrode taking into account possible small displacements of RePE, to test feasibility of RePE-tES sessions at home. The new RePE neuronavigation-free positioning relies on brain MRI space distances, and produced a mean displacement of 3.5 ± 0.8 mm, and the re-positioning of 4.8 ± 1.1 mm. Higher electric field in S1 than in M1 was best obtained with the occipital reference electrode, a montage that proved to feature low sensitivity to typical RePE millimetric displacements. Additionally, a new tES accessory was developed to enable repositioning the electrodes over the scalp also at home, with a precision which is acceptable according to the modeling-estimated intracerebral currents. Altogether, we provide here a procedure to simplify and make easily applicable RePE-tDCS, which enables efficacious personalized treatments
Copper perturbation in 2 monozygotic twins discordant for degree of cognitive impairment
Background: Recent evidence indicates that peripheral tissue markers can provide information regarding changes affecting cellular metabolism in Alzheimer disease (AD). We previously reported that serum copper levels can discriminate subjects with AD from normal control subjects (with 60% sensitivity and 95% specificity) and from patients with vascular dementia (with 63% sensitivity and 85% specificity). Objective: To study the correlation between AD and serum levels of transition metals and markers of peripheral oxidative stress. Design: Case study. Setting: General hospital inpatient wards and outpatient clinics. Patients: A pair of elderly monozygotic female twins discordant for AD. Main Outcome Measures: Biochemical analyses of peripheral-blood transition metals and indicators of oxidative stress and neurologic and neuropsychological assessments of clinical status for presence of cognitive impairment and AD. Results: Serum copper and total peroxide levels were both 44% higher in the twin with greater cognitive impairment and a diagnosis of AD. Conclusions: The cases reported support the hypothesis of a major involvement of copper and oxidative abnormalities in AD
Intra-cortical connectivity in multiple sclerosis: a neurophysiological approach
Multiple sclerosis is an autoimmune disease predominantly affecting the white matter of the CNS, causing--among functional sequelae-cortico--cortical partial or total disconnection. Since functional connectivity linking cerebral regions is reliably reflected by synchronization of their neuronal firing, in this study an electrophysiological parameter measured by magnetoencephalography was used to quantify an intra-cortical connectivity (ICC) index focused on the primary somatosensory cortical areas (S1). Twenty-one patients affected by mild (Extended Disability Scale Score, median 1,5) relapsing-remitting (RR) multiple sclerosis in the remitting phase without clinically evident sensory impairment were evaluated. Three dimensional MRI was used to quantify the lesion load, discriminating black hole and non-black hole portions, normalized by individual brain volumes. When matched with a control population, multiple sclerosis patients showed a reduced ICC combined with the complete loss of the finger-dependent functional specialization in S1 cortex of the dominant hemisphere. No association was found between ICC impairment and disease duration, or prolongation of the central sensory conduction time, presence of spinal cord lesions and ongoing disease modifying therapy. The ICC index slightly correlated with the lesion load. A local index of ICC in a circumscribed brain primary area was altered in mildly disabled RR-multiple sclerosis patients, also in absence of any impairment of central sensory conduction. In conclusion, the diffuse damage influencing the multi-nodal network subtending complex cerebral functions also affects intrinsic cortical connectivity. The S1 ICC index is proposed as a highly sensitive and simple-to-test functional measure for the evaluation of intra-cortical synchronization mechanisms in RR-multiple sclerosis
Functional and structural balances of homologous sensorimotor regions in multiple sclerosis fatigue
Fatigue in multiple sclerosis (MS) is a highly disabling symptom. Among the central mechanisms behind it, an involvement of sensorimotor networks is clearly evident from structural and functional studies. We aimed at assessing whether functional/structural balances of homologous sensorimotor regions—known to be crucial for sensorimotor networks effectiveness—decrease with MS fatigue increase. Functional connectivity measures at rest and during a simple motor task (weak handgrip of either the right or left hand) were derived from primary sensorimotor areas electroencephalographic recordings in 27 mildly disabled MS patients. Structural MRI-derived inter-hemispheric asymmetries included the cortical thickness of Rolandic regions and the volume of thalami. Fatigue symptoms increased together with the functional inter-hemispheric imbalance of sensorimotor homologous areas activities at rest and during movement, in absence of any appreciable parenchymal asymmetries. This finding supports the development of compensative interventions that may revert these neuronal activity imbalances to relieve fatigue in MS.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Cortical ischemic lesion burden measured by DIR is related to carotid artery disease severity
BACKGROUND:
Over time, exposure to cerebrovascular risk factors and carotid artery disease may cause multiple asymptomatic brain cortical and subcortical microinfarcts, which are commonly found at brain autopsy. So far, lack of convenient neuroimaging tools limited the investigation of grey matter ischemic damage in vivo. We applied the Double Inversion Recovery (DIR) sequence to explore the impact of carotid artery disease on intracortical ischemic lesion load in vivo, taking into account the impact of demographic characteristics and vascular risk factors.
METHODS:
DIR was acquired in 62 patients with common cerebrovascular risk factors stratified in three groups according to carotid artery disease severity. Intracortical lesions scored on DIR (DIRlns) were classified by vascular territory, lobe and hemisphere. White matter hyperintensities (WMHs) volume was also quantified on Fluid Attenuated Inversion Recovery sequence (FLAIR).
RESULTS:
Among demographic characteristics and cerebrovascular risk variables explored, General Linear Model indicated that age and carotid artery disease were significantly associated to DIRlns. After correcting for age, DIRlns load was found to be significantly dependent on carotid artery stenosis severity (F(2, 58) = 5.56, p = 0.006). A linear positive correlation between DIRlns and WMHs was found after correcting for age (p = 0.003).
CONCLUSIONS:
Carotid disease severity is associated with DIRlns accrual. Microembolism and impaired cerebral hemodynamics may act as physiopathological mechanisms underlying cortical ischemic damage. The role of other factors, such as small vessel disease and the possible interaction with carotid disease, remains to be further explored