16 research outputs found

    The Role of Cis-Lunar Space in Future Global Space Exploration

    Get PDF
    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this paper, motivated in part by recent interest expressed at the Global Exploration Roadmap Stakeholder meeting. This paper will also explore the links between this HAT Cis-Lunar Destination Team analysis and the recently released ISECG Global Exploration Roadmap and other potential international considerations, such as preventing harmful interference to radio astronomy observations in the shielded zone of the moon

    Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Get PDF
    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015 Workshop session

    Human Mars Surface Science Operations

    Get PDF
    Human missions to the surface of Mars will have challenging science operations. This paper will explore some of those challenges, based on science operations considerations as part of more general operational concepts being developed by NASA's Human Spaceflight Architecture (HAT) Mars Destination Operations Team (DOT). The HAT Mars DOT has been developing comprehensive surface operations concepts with an initial emphasis on a multi-phased mission that includes a 500-day surface stay. This paper will address crew science activities, operational details and potential architectural and system implications in the areas of (a) traverse planning and execution, (b) sample acquisition and sample handling, (c) in-situ science analysis, and (d) planetary protection. Three cross-cutting themes will also be explored in this paper: (a) contamination control, (b) low-latency telerobotic science, and (c) crew autonomy. The present traverses under consideration are based on the report, Planning for the Scientific Exploration of Mars by Humans1, by the Mars Exploration Planning and Analysis Group (MEPAG) Human Exploration of Mars-Science Analysis Group (HEM-SAG). The traverses are ambitious and the role of science in those traverses is a key component that will be discussed in this paper. The process of obtaining, handling, and analyzing samples will be an important part of ensuring acceptable science return. Meeting planetary protection protocols will be a key challenge and this paper will explore operational strategies and system designs to meet the challenges of planetary protection, particularly with respect to the exploration of "special regions." A significant challenge for Mars surface science operations with crew is preserving science sample integrity in what will likely be an uncertain environment. Crewed mission surface assets -- such as habitats, spacesuits, and pressurized rovers -- could be a significant source of contamination due to venting, out-gassing and cleanliness levels associated with crew presence. Low-latency telerobotic science operations has the potential to address a number of contamination control and planetary protection issues and will be explored in this paper. Crew autonomy is another key cross-cutting challenge regarding Mars surface science operations, because the communications delay between earth and Mars could as high as 20 minutes one way, likely requiring the crew to perform many science tasks without direct timely intervention from ground support on earth. Striking the operational balance between crew autonomy and earth support will be a key challenge that this paper will address

    Low-Latency Teleoperations: Operational Implications for Human Space Exploration

    Get PDF
    Low-latency teleoperations (LLT) is envisioned to be an element of human exploration missions in a number of different applications. LLT can be broadly considered to encompass any remote operation of an asset with a communication delay that is less than the human response time to allow for what is effectively "real-time" or "near real-time" operations. This paper will explore motivations and operational implications for why and how LLT might be used for human exploration space missions. LLT analyses have been performed under the auspices of the NASA Human Spaceflight Architecture Team (HAT) and Evolvable Mars Campaign (EMC). The EMC created a flexible, evolvable, capability-driven architectural strategy to enable a sustainable long-term human presence at Mars. LLT is envisioned to be part of that strategy for both in-space and on-surface applications, and this paper will expand on operational considerations within that broader strategic context, as well additional contexts. Some operational implications explored in this paper, derived largely from previous work, are: (1) crew mission support, for which we will address roles for Mission Control on earth, balanced with the capability for crew and robotic assets to operate independently, (2) science operations, with a focus on "backroom" support, highly dynamic science, and enhanced science return and efficiency, and (3) operational efficiency at a deep-space destination such as Mars, including implications for communications infrastructures and how to leverage and balance system autonomy with crew operations, both of which can inform the overall operational "choreography" between crew members, multiple shifts, and exploration assets

    Preparing for Mars: The Evolvable Mars Campaign 'Proving Ground' Approach

    Get PDF
    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence beyond Low Earth Orbit, we are in the early stages of planning missions within the framework of an Evolvable Mars Campaign. Initial missions would be conducted in near-Earth cis-lunar space and would eventually culminate in extended duration crewed missions on the surface of Mars. To enable such exploration missions, critical technologies and capabilities must be identified, developed, and tested. NASA has followed a principled approach to identify critical capabilities and a "Proving Ground" approach is emerging to address testing needs. The Proving Ground is a period subsequent to current International Space Station activities wherein exploration-enabling capabilities and technologies are developed and the foundation is laid for sustained human presence in space. The Proving Ground domain essentially includes missions beyond Low Earth Orbit that will provide increasing mission capability while reducing technical risks. Proving Ground missions also provide valuable experience with deep space operations and support the transition from "Earth-dependence" to "Earth-independence" required for sustainable space exploration. A Technology Development Assessment Team identified a suite of critical technologies needed to support the cadence of exploration missions. Discussions among mission planners, vehicle developers, subject-matter-experts, and technologists were used to identify a minimum but sufficient set of required technologies and capabilities. Within System Maturation Teams, known challenges were identified and expressed as specific performance gaps in critical capabilities, which were then refined and activities required to close these critical gaps were identified. Analysis was performed to identify test and demonstration opportunities for critical technical capabilities across the Proving Ground spectrum of missions. This suite of critical capabilities is expected to provide the foundation required to enable a variety of possible destinations and missions consistent with the Evolvable Mars Campaign.. The International Space Station will be used to the greatest extent possible for exploration capability and technology development. Beyond this, NASA is evaluating a number of options for Proving Ground missions. An "Asteroid Redirect Mission" will demonstrate needed capabilities (e.g., Solar Electric Propulsion) and transportation systems for the crew (i.e., Space Launch System and Orion) and for cargo (i.e., Asteroid Redirect Vehicle). The Mars 2020 mission and follow-on robotic precursor missions will gather Mars surface environment information and will mature technologies. NASA is considering emplacing a small pressurized module in cis-lunar space to support crewed operations of increasing duration and to serve as a platform for critical exploration capabilities testing (e.g., radiation mitigation; extended duration deep space habitation). In addition, "opportunistic mission operations" could demonstrate capabilities not on the Mars critical path that may, nonetheless, enhance exploration operations (e.g., teleoperations, crew assisted Mars sample return). The Proving Ground may also include "pathfinder" missions to test and demonstrate specific capabilities at Mars (e.g., entry, descent, and landing). This paper describes the (1) process used to conduct an architecture-driven technology development assessment, (2) exploration mission critical and supporting capabilities, and (3) approach for addressing test and demonstration opportunities encompassing the spectrum of flight elements and destinations consistent with the Evolvable Mars Campaign

    Biomolecule Sequencer: Next-Generation DNA Sequencing Technology for In-Flight Environmental Monitoring, Research, and Beyond

    Get PDF
    On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human Research Program investigations, and even life detection experiments for astrobiology missions

    Ethics for an uninhabited planet

    Get PDF
    Some authors argue that we have a moral obligation to leave Mars the way it is, even if it does not harbour any life. This claim is usually based on an assumption that Mars has intrinsic value. The problem with this concept is that different authors use it differently. In this chapter, I investigate different ways in which an uninhabited Mars is said to have intrinsic value. First, I investigate whether the planet can have moral standing. I find that this is not a plausible assumption. I then investigate different combinations of objective value and end value. I find that there is no way we can know whether an uninhabited Mars has objective end value and even if it does, this does not seem to imply any moral obligations on us. I then investigate whether an uninhabited Mars can have subjective end value. I conclude that this is very plausible. I also investigate whether an uninhabited Mars can have objective instrumental value in relation to some other, non-Mars related end value. I find also this very plausible. It is also highly plausible, however, that spreading (human or other) life to a presently uninhabited Mars can also have subjective end value, as well as objective instrumental value. I mention shortly two ways of prioritising between these values: (1) The utilitarian method of counting the number of sentient beings who entertain each value and determining the strength of the values to them. (2) Finding a compromise that allows colonisation on parts of the planet while leaving other parts untouched. These methods should be seen as examples, not as an exhaustive list. Also, I do not take a definitive stand in favour of any of the two approaches, though it seems at least prima facie that the second approach may have a better chance of actually leading to a constructive result

    Mitigating Adverse Effects of a Human Mission On Possible Martian Indigenous Ecosystems

    No full text
    Although human beings are, by most standards, the most capable agents to search for and detect extraterrestrial life, we are also potentially the most harmful. While there has been substantial work regarding forward contamination with respect to robotic missions, the issue of potential adverse effects on possible indigenous Martian ecosystems, such as biological contamination, due to a human mission has remained relatively unexplored and may require our attention now as this presentation will try to demonstrate by exploring some of the relevant scientific questions, mission planning challenges, and policy issues. An informal, high-level mission planning decision tree will be discussed and is included as the next page of this abstract. Some of the questions to be considered are: To what extent could contamination due to a human presence compromise possible indigenous life forms? To what extent can we control contamination? For example, will it be local or global? What are the criteria for assessing the biological status of Mars, both regionally and globally? For example, can we adequately extrapolate from a few strategic missions such as sample return missions? What should our policies be regarding our mission planning and possible interaction with what are likely to be microbial forms of extraterrestrial life? Central to the science and mission planning issues is the role and applicability of terrestrial analogs, such as Lake Vostok for assessing drilling issues, and modeling techniques. Central to many of the policy aspects are scientific value, international law, public concern, and ethics. Exploring this overall issue responsibly requires an examination of all these aspects and how they interrelate

    Applying a Wearable Voice-Activated Computer to Instructional Applications in Clean Room Environments

    No full text
    The use of wearable computing technology in restrictive environments related to space applications offers promise in a number of domains. The clean room environment is one such domain in which hands-free, heads-up, wearable computing is particularly attractive for education and training because of the nature of clean room work We have developed and tested a Wearable Voice-Activated Computing (WEVAC) system based on clean room applications. Results of this initial proof-of-concept work indicate that there is a strong potential for WEVAC to enhance clean room activities
    corecore