13 research outputs found

    Investigation on Photovoltaic Performance based on Matchstick-Like Cu2S–In2S3Heterostructure Nanocrystals and Polymer

    Get PDF
    In this paper, we synthesized a novel type II cuprous sulfide (Cu2S)–indium sulfide (In2S3) heterostructure nanocrystals with matchstick-like morphology in pure dodecanethiol. The photovoltaic properties of the heterostructure nanocrystals were investigated based on the blends of the nanocrystals and poly(2-methoxy-5-(2′-ethylhexoxy)-p-phenylenevinylene) (MEH-PPV). In comparison with the photovoltaic properties of the blends of Cu2S or In2S3nanocrystals alone and MEH-PPV, the power conversion efficiency of the hybrid device based on blend of Cu2S–In2S3and MEH-PPV is enhanced by ~3–5 times. This improvement is consistent with the improved exciton dissociation or separation and better charge transport abilities in type II heterostructure nanocrystals

    Synthesis of Cu3SnS4 nanocrystals and nanosheets by using Cu31S16 as seeds

    No full text
    Orthorhombic Cu3SnS4 nano-cuboids and nanosheets were synthesized by using monoclinic Cu31S16 nanocrystals as seeds. Transmission electron microscopy and powder X-ray diffractometry were adopted to investigate the resultant nanocrystals and the structural transformation of monoclinic Cu31S16 to orthorhombic Cu3SnS4

    One-pot synthesis of PVP-coated Ni0.6Fe2.4O4 nanocrystals

    No full text
    Novel poly(N-vinyl-2-pyrrolidone) (PVP)-coated nickel ferrite nanocrystals were prepared by simultaneously pyrolyzing nickel(II) acetylacetonate (Ni(acac)) and iron(III) acetylacetonate (Fe(acac)) in N-vinyl-2-pyrrolidone (NVP). The PVP coating was formed in situ through polymerization of NVP. The crystalline structure of the resultant nickel ferrite was analyzed by high-resolution transmission electron microscopy, electron diffraction patterns, and powder X-ray diffraction. In addition, the valence state of Ni and the metal contents of Ni and Fe in different valence states were analyzed by X-ray photoelectron spectroscopy (XPS), atomic absorption and the phenanthroline method. The surface coating layer of PVP and its binding states were characterized by Fourier transform infrared spectroscopy in combination with XPS. Colloidal stability experiments revealed that the nanocrystals could be dispersed well in both phosphate-buffered saline and Dulbecco's Modified Eagle Medium

    One dimensional CuInS2-ZnS heterostructured nanomaterials as low-cost and high-performance counter electrodes of dye-sensitized solar cells

    No full text
    Wurtzite CuInS2-ZnS heterostructured nanorods are synthesized via a seed-assisted synthetic route. Cu1.94S-ZnS heterostructured nanorods are transformed into CuInS2-ZnS by reacting with indium ions to convert copper sulfide to wurtzite CuInS2. The shapes of the CuInS2-ZnS heterostructured nanorods can be tuned from burning torch-like to longer rod-like by varying the concentration of added indium. Dye-sensitized solar cells (DSSCs) using these heterostructured nanocrystals as counter electrodes had a power conversion efficiency (7.5%) superior to DSSCs made with conventional platinum electrode (7.1%) under the same device configuration

    Bilingual term alignment from comparable corpora in English discharge summary and Chinese discharge summary

    Get PDF
    BACKGROUND: Electronic medical record (EMR) systems have become widely used throughout the world to improve the quality of healthcare and the efficiency of hospital services. A bilingual medical lexicon of Chinese and English is needed to meet the demand for the multi-lingual and multi-national treatment. We make efforts to extract a bilingual lexicon from English and Chinese discharge summaries with a small seed lexicon. The lexical terms can be classified into two categories: single-word terms (SWTs) and multi-word terms (MWTs). For SWTs, we use a label propagation (LP; context-based) method to extract candidates of translation pairs. For MWTs, which are pervasive in the medical domain, we propose a term alignment method, which firstly obtains translation candidates for each component word of a Chinese MWT, and then generates their combinations, from which the system selects a set of plausible translation candidates. RESULTS: We compare our LP method with a baseline method based on simple context-similarity. The LP based method outperforms the baseline with the accuracies: 4.44% Acc1, 24.44% Acc10, and 62.22% Acc100, where AccN means the top N accuracy. The accuracy of the LP method drops to 5.41% Acc10 and 8.11% Acc20 for MWTs. Our experiments show that the method based on term alignment improves the performance for MWTs to 16.22% Acc10 and 27.03% Acc20. CONCLUSIONS: We constructed a framework for building an English-Chinese term dictionary from discharge summaries in the two languages. Our experiments have shown that the LP-based method augmented with the term alignment method will contribute to reduction of manual work required to compile a bilingual sydictionary of clinical terms

    Small

    No full text
    Titania nanoparticles (P25) are successfully chemically bonded with graphdiyne (GD) nanosheets by a facile hydrothermal treatment, to form a novel nanocomposite photocatalyst. The as-prepared P25GD nanocomposite exhibits higher photocatalytic activity for degrading methylene blue under UV irradiation than not only P25 and P25carbon nanotube composite but also the current well-known P25graphene composite photocatalysts. Moreover, P25GD also shows considerable visible-light-driven photocatalytic activity, since the formation of chemical bonds between P25 and GD effectively decreases the bandgap of P25 and extends its absorbable light range. The photocatalytic activity of P25GD can be adjusted by changing the content of GD in composites and the optimized value is about 0.6 wt%. Such a nanocomposite photocatalyst might find potential application in a wide range of fields including air purification and waste water treatment.Titania nanoparticles (P25) are successfully chemically bonded with graphdiyne (GD) nanosheets by a facile hydrothermal treatment, to form a novel nanocomposite photocatalyst. The as-prepared P25GD nanocomposite exhibits higher photocatalytic activity for degrading methylene blue under UV irradiation than not only P25 and P25carbon nanotube composite but also the current well-known P25graphene composite photocatalysts. Moreover, P25GD also shows considerable visible-light-driven photocatalytic activity, since the formation of chemical bonds between P25 and GD effectively decreases the bandgap of P25 and extends its absorbable light range. The photocatalytic activity of P25GD can be adjusted by changing the content of GD in composites and the optimized value is about 0.6 wt%. Such a nanocomposite photocatalyst might find potential application in a wide range of fields including air purification and waste water treatment

    Accurate Control of Multishelled ZnO Hollow Microspheres for Dye-Sensitized Solar Cells with High Efficiency

    No full text
    A series of multishelled ZnO hollow microspheres with controlled shell number and inter-shell spacing have been successfully prepared by a simple carbonaceous microsphere templating method, whose large surface area and complex multishelled hollow structure enable them load sufficient dyes and multi-reflect the light for enhancing light harvesting and realize a high conversion efficiency of up to 5.6% when used in dye-sensitized solar cells.No Full Tex

    AB INITIO

    No full text
    corecore