13 research outputs found

    Co-primary multi-operator resource sharing for small cell networks

    No full text
    Abstract The aim of this thesis is to devise novel co-primary spectrum sharing (CoPSS) methods for future fifth generation (5G) networks and beyond. The target is to improve data rates of small cell networks (SCNs) in which mobile network operators (MNOs) share their dedicated frequency spectrum (spectrum pooling) or a common spectrum (mutual renting). The performance of the proposed methods is assessed through extensive system-level simulations. MNOs typically acquire exclusive usage rights for certain frequency bands and have little incentive to share spectrums with other operators. However, due to higher cost and spectrum scarcity at lower frequencies it is expected that efficient use of the spectrum in 5G networks will rely more on spectrum sharing than exclusive licenses. This is especially true for new higher candidate frequencies (> 6 GHz) that do not have a pre-existing spectrum regulation framework. In the first part of the thesis, we tackle the challenge of providing higher data rates within limited spectral resources. Each SCN MNO has its own dedicated spectrum, and each MNO defines a percentage of how much its spectrum it is willing to share. The idea of the proposed CoPSS algorithms is that the spectrum is dynamically shared among MNOs based on their spectrum utilization, which is shared among MNOs in the network. This way interference can be avoided and spectrum utilization is maximized. Unused resources are shared equally between overloaded MNOs for a given time instant. Thus, only short-term fairness among overloaded SCNs can be guaranteed. In the second part, we consider a multi-operator small cell network where MNOs share a common pool of radio resources. The goal is to ensure the long term fairness of spectrum sharing without coordination among small cell base stations. We develop a decentralized control mechanism for base stations using the Gibbs sampling based learning tool, which allocates suitable amount of the spectrum for each base station while avoiding interference from SCNs and maximizing the total network throughput. In the studied scenarios, we show the importance of coordination among MNOs when the dedicated spectrum is shared. However, when MNOs share a common spectrum, a decentralized control mechanism can be used to allocate suitable amounts of spectrum for each base station. The proposed algorithms are shown to be effective for different network layouts, by achieving significant data rate enhancements with a low overhead.Tiivistelmä Tämä väitöskirja keskittyy kehittämään uusia menetelmiä, joilla jaetaan taajuuksia useiden operaattoreiden kesken tulevista viidennen sukupolven verkoista alkaen. Päätavoite on parantaa tiedonsiirtonopeuksia sellaisissa piensoluverkoissa, joissa matkapuhelinoperaattorit jakavat joko heidän omia taajuusalueitaan tai heillä yhteisomistuksessa olevia taajuuksia. Kehitettyjen menetelmien suorituskykyä arvioidaan mittavien järjestelmätason simulointien avulla. Matkapuhelinoperaattorit tyypillisesti omistavat yksin tietyt taajuusalueet, eivätkä ole valmiita jakamaan niitä. On kuitenkin oletettu, että tulevaisuudessa matkapuhelinoperaattorit joutuvat jakamaan taajuuksia, koska taajuusalueet ovat kalliita ja niukkoja erityisesti matalilla taajuusalueilla. Korkeammat taajuusalueet (> 6 GHz) puolestaan muodostavat otollisen alustan tehokkaalle spektrin jaetulle käytölle, koska niillä ei ole vielä olemassa olevaa taajuussääntelyä. Väitöskirjan ensimmäisessä osassa keskitytään kasvattamaan tiedonsiirtonopeuksia kun jokainen matkapuhelinoperaattori omistaa oman taajuuskaistansa ja matkapuhelinoperaattorit määrittävät kuinka suuren prosentuaalisen osuuden ovat valmiita jakamaan. Esitettyjen algoritmien päätavoite on jakaa taajuuksia dynaamisesti matkapuhelinoperaattoreiden kesken. Algoritmeissa hyödynnetään tietoa matkapuhelinoperaattoreiden taajuuden käyttöasteesta, jonka matkapuhelinoperaattoritkommunikoivat toisilleen. Näin häiriö voidaan välttää ja taajuuden käyttö maksimoidaan. Käyttämättömät taajuudet jaetaan tasaisesti matkapuhelinoperaattorien kesken tietyllä ajanhetkellä. Näin voidaan taata lyhytaikainen oikeudenmukainen taajuuksien käyttö, mutta ei pitkäaikaista oikeudenmukaista taajuuksien käyttöä. Väitöskirjan toisessa osassa matkapuhelinoperaattorit jakavat yhteisomistuksessa olevia taajuuksia. Tavoitteena on saavuttaa pitkäaikainen taajuuksien oikeudenmukainen käyttö, kun piensoluverkot eivät kommunikoi keskenään. Työssä kehitetään piensoluverkoille hajautettu algoritmi, joka perustuu oppimistyökaluun Gibbs-näytteistys. Näin saadaan allokoitua jokaiselle tukiasemalle tarvittava määrä taajuusresursseja niin, että häiriö tukiasemien välillä minimoidaan ja koko piensoluverkon suorituskyky maksimoidaan. Tutkituissa skenaarioissa osoitetaan matkapuhelinoperaattoreiden välisen koordinaation tärkeys, kun jaetaan omia taajuusalueita. Toisaalta kun operaattorit jakavat yhteisomistuksessa olevia taajuuksia on mahdollista käyttää algoritmeja, joissa ei ole koordinaatiota matkapuhelinoperaattoreiden kesken. Väitöskirjassa vahvistetaan kehitettyjen algoritmien olevan tehokkaita ja sopivan monenlaisiin verkkoympäristöihin saavuttaen merkittäviä parannuksia tiedonsiirtonopeuteen ilman suuria kustannuksia

    On the application of network slicing for 5G-V2X

    No full text
    Abstract Ultra-reliable vehicle-to-everything (V2X) communication is essential for enabling the next generation of intelligent vehicles. V2X communication refers to the exchange of information between vehicle and infrastructure (V2I) or between vehicles (V2V). Network slicing is one of the promising technologies for the next generation of connected devices, creating several logical networks on a common and programmable physical infrastructure. Following this idea, we propose a network slicing based communication model for vehicular networks. In this paper, we have modelled a multi-lane highway scenario with vehicles having heterogeneous traffic requirements. Autonomous driving slice (exchanges safety messages) and infotainment slice (provides video stream) are the two logical slices created on a common infrastructure. In addition, a relaying approach is utilized to improve the performance of low signal-to-interferenceplus- noise-ratio (SINR) video streaming vehicles. These low SINR vehicles are served by other infotainment vehicles, which have high quality V2V and V2I link and are not serving as autonomous driving slice access point. An extensive Long Term Evolution Advanced (LTE-A) system level simulator is used to evaluate the performance of the proposed method, in which it is shown that the proposed network slicing approach increases the packet reception ratio (PRR) from 31.15% to 99.47%

    Higher frequency band beamforming scheme for high speed train

    No full text
    Abstract With the increasing popularity of high speed trains (HSTs) and the traffic forecast for future cellular networks, the need to provide very high data rates using higher frequency bands (HFBs) for train passengers is becoming crucial. In this paper, we present a timer-based beamforming selection algorithm for HST, which exploits the prior knowledge of the position and direction of the HST. A sequential and hierarchical codebook is designed based on the array response vectors and linked to the line-of-sight (LOS) angle-of-arrival/departure base station (BS)-HST link. The effect of velocity feedback errors on the throughput performance was analyzed. The antenna deactivation and the sub-array approaches were considered to mitigate the effect of velocity feedback errors. Evaluation of our proposed beamforming scheme indicates a close performance to the optimal singular value decomposition (SVD) scheme when no velocity feedback error occurs and with the occurrence of velocity feedback errors, the sub-array approach proved to be an efficient way to reduce the effect of the errors

    Feasibility studies on the use of higher frequency bands and beamforming selection scheme for high speed train communication

    Get PDF
    Abstract With increasing popularity of high speed trains and traffic forecast for future cellular networks, the need to provide improved data rates using higher frequency bands (HFBs) for train passengers is becoming crucial. In this paper, we modify the OFDM frame structure for HST, taking into account the increasing sensitivity to speed at HFBs. A lower bound on the SNR/SINR for a given rate for reliable communication was derived considering the physical layer parameters from the OFDM frame. We also analyze different pathlossmodels in the context of examining the required gain needed to achieve the same performance as with microwave bands. Finally, we present a time-based analogue beamforming selection approach for HST. We observed that, irrespective of the pathloss models used, the required gains are within the same range. For the same SNR/SINR at different frequency bands, the achievable data rate varies with respect to the frequency bands. Our results show the potential of the use of HFBs. However, due to the increased sensitivity of some channel parameters, a maximum frequency band of 38GHz is suggested. Evaluation of our proposed beamforming scheme indicates a close performance to the optimal SVD scheme with a marginal rate gap of less than 2 b/s/Hz

    Enhanced co-primary spectrum sharing method for multi-operator networks

    No full text
    Abstract We consider a multi-operator small cell network where mobile network operators are sharing a common pool of radio resources. The goal is to ensure long term fairness of spectrum sharing without coordination among small cell base stations. It is assumed that spectral allocation of the small cells is orthogonal to the macro network layer, and thus, only the small cell traffic is modeled. We develop a decentralized control mechanism for base stations using the Gibbs sampling based learning technique, which allocates a suitable amount of spectrum for each base station. Five algorithms are compared addressing co-primary multi-operator resource sharing under heterogeneous traffic requirements and the performance is assessed through extensive system-level simulations. The main performance metrics are user throughput and fairness between operators. The numerical results demonstrate that the proposed Gibbs sampling based learning algorithm provides about tenfold cell edge throughput gains compared to state-of-the-art algorithms, while ensuring fairness between operators

    Network slicing for vehicular communication

    No full text
    Abstract Ultra‐reliable vehicle‐to‐everything (V2X) communication is essential for enabling the next generation of intelligent vehicles. V2X communication is a growing area of communication that connects vehicles to neighboring vehicles (V2V), infrastructure (V2I), and pedestrians (V2P). Network slicing is one of the promising technologies for connectivity of the next generation devices, creating several logical networks on a common and programmable physical infrastructure. Network slicing offers an efficient way to satisfy the diverse use case requirements by exploiting the benefits of shared physical infrastructure. In this regard, we propose a network slicing‐based communication solution for vehicular networks. In this work, we model a highway scenario with vehicles having heterogeneous traffic demands. The autonomous driving slice (safety messages) and the infotainment slice (video stream) are the two logical slices created on a common infrastructure. We formulated a network clustering and slicing algorithm to partition the vehicles into different clusters and allocate slice leaders (SLs) to each cluster. SLs serve its clustered vehicles with high‐quality V2V links and forwards safety information with low latency. On the other hand, road side unit provides infotainment service using high‐quality V2I links. An extensive Long Term Evolution Advanced system‐level simulator with enhancement of cellular V2X standard is used to evaluate the performance of the proposed method, in which it is shown that the proposed network slicing technique achieves low latency and high‐reliability communication

    Performance evaluation of adaptive beamforming in 5G-V2X networks

    No full text
    Abstract Vehicles are the third fastest growing connected device type after smart phones and tablets. Also, automotive industry is interested to get more vehicles connected to the internet to improve traffic safety and efficiency. This creates a need for Vehicle-to-Everything (V2X) communications. In this work, the possibility of exploiting beamforming in LTE-V2X is considered. Singular value decomposition (SVD) receiver and precoder is implemented in an LTE-A system level simulator and the performance on multi-lane highway scenario is simulated and analyzed in downlink Vehicle-to-Infrastructure (V2I) scenario. The performance is compared to the conventional maximum-ratio combining (MRC) and LTE codebook precoded minimum mean square error (MMSE) receivers. In addition, the switched-beam beamforming is imitated by modified antenna patterns with 7 and 15 narrow beams. The results show that the SVD receiver provides gain compared to the conventional MRC and MMSE receivers in ideal scenario. Furthermore, with modified antenna patterns, the performance was enhanced when compared to the default antenna pattern

    System level analysis of multi-operator small cell network at 10 GHz

    No full text
    Abstract Due to higher cost and spectrum scarcity, it is expected that an efficient use of spectrum in fifth generation (5G) networks will rather rely on sharing than exclusive licenses, especially when higher frequency allocations are considered. In this paper, the performance of a dense indoor multi-operator small cell network at 10 GHz is analyzed. The main goal is to show the benefits obtained at higher carrier frequency due to network densification while mobile network operators are sharing the spectrum. The analysis is assessed through extensive system level simulations. The main performance metrics are user throughput and signal-to-interference-and-noise ratio. Results show that when 10 GHz carrier frequency is used it allows higher network densities while satisfying user throughput requirements. However, when network is sparse lower carrier frequency leads to better performance. When network is dense, on average 2 Mb/s better mean throughput is achieved at 10 GHz when compared to traditional cellular frequency

    Vehicle clustering for improving enhanced LTE-V2X network performance

    No full text
    Abstract Vehicle-to-Everything (V2X) communication holds the promise for improving road safety and reducing road accidents by enabling reliable and low latency services for vehicles. Vehicles are among the fastest growing type of connected devices. Therefore, there is a need for V2X communication, i.e., passing of information from Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) and vice versa. In this paper, we focus on both V2I and V2V communication in a multi-lane freeway scenario, where coverage is provided by the Long Term Evolution Advanced (LTE-A) road side unit (RSU) network. Here, we propose a mechanism to offload vehicles with low signal-to-interference-plus-noise ratio (SINR) to be served by other vehicles, which have much higher quality link to the RSU. Furthermore, we analyze the improvements in the probabilities of achieving target throughputs and the performance is assessed through extensive system-level simulations. Results show that the proposed solution offloads low quality V2I links to stronger V2V links, and further increases successful transmission probability from 93% to 99.4%

    Configurable 5G air interface for high speed scenario

    No full text
    Abstract In fifth generation (5G) networks one target is to provide very high capacity wireless access for the places where a lot of people consume a lot of data. Wireless communication is needed to provide access to high moving vehicles, however, extreme velocities must be taken into account in the design. Specific problems for air interface design to support extreme velocities are: high Doppler shifts, Inter-Carrier Interference (ICI), and difficulties in channel measurements needed for demodulation and hand-over measurements. Furthermore, very high data rates on outdoor macro cellular environment is challenging due to path loss. In high speed train (HST) deployments, the presence of line-of-sight connection enables the usage of wide bandwidths that are available on cmWave and mmWave spectrum. In this paper, we investigate the performance of mmWave single frequency network (SFN) in HST scenario. The performance of orthogonal frequency division multiplexing (OFDM) transmission with different new radio (NR) parameters is analyzed. Especially, the effect of Doppler and cyclic prefix (CP) is analyzed. Moreover, we conduct link level simulations and analyze the spectral efficiency in ideal HST scenario. Results show that it is possible to achieve very high data rates up to 10 Gbps
    corecore