11,085 research outputs found

    Skin Mast Cells Contribute to Sporothrix schenckii Infection

    Get PDF
    Background: Sporothrix schenckii (S. schenckii), a dimorphic fungus, causes sporotrichosis. Mast cells (MCs) have been described to be involved in skin fungal infections. The role of MCs in cutaneous sporotrichosis remains largely unknown. Objectives: To characterize the role and relevance of MCs in cutaneous sporotrichosis. Methods: We analyzed cutaneous sporotrichosis in wild-type (WT) mice and two different MC-deficient strains. In vitro, MCs were assessed for S. schenckii-induced cytokine production and degranulation after incubation with S. schenckii. We also explored the role of MCs in human cutaneous sporotrichosis. Results: WT mice developed markedly larger skin lesions than MC-deficient mice (> 1.5 fold) after infection with S. schenckii, with significantly increased fungal burden. S. schenckii induced the release of tumor necrosis factor alpha (TNF), interleukin (IL)-6, IL-10, and IL-1β by MCs, but not degranulation. S. schenckii induced larger skin lesions and higher release of IL-6 and TNF by MCs as compared to the less virulent S. albicans. In patients with sporotrichosis, TNF and IL-6 were increased in skin lesions, and markedly elevated levels in the serum were linked to disease activity. Conclusions: These findings suggest that cutaneous MCs contribute to skin sporotrichosis by releasing cytokines such as TNF and IL-6

    Enhanced broadband near-IR luminescence and gain spectra of bismuth/erbium co-doped fiber by 830 and 980 nm dual pumping

    Full text link
    © 2017 Author(s). A dual 830 and 980 nm pumping scheme is proposed aiming at broadening and flattening the spectral performance of bismuth/erbium codoped multicomponent fiber (BEDF). The spectral properties of distinct Bi active centers (BACs) associated with germanium (BAC-Ge), aluminium (BAC-Al), phosphorus (BAC-P) and silicon (BAC-Si) are characterized under single pumping of 830 and 980 nm, respectively. Based on the emission slope efficiencies of BAC-Al (∼1100 nm) and BAC-Si (∼1430 nm) under single pumping of 830 and 980 nm, the dual pumping scheme with the optimal pump power ratio of 25 (980 nm VS 830 nm) is determined to achieve flat, ultrabroadband luminescence spectra covering the wavelength range 950-1600 nm. The dual pumping scheme is further demonstrated on the on-off gain performance of BEDF. It is found under the pump power ratio of ∼8 (980 VS 830 nm), The gain spectrum has been flattened and broadened over 300 nm (1300-1600 nm) with an average gain coefficient of ∼1.5 dBm-1. The spectral coverage is approximately 1.5 and 3 times wider compared to single pumping of 830 and 980 nm pumping, respectively. The energy level diagrams of 830 and 980 nm are also constructed separately in view of the optical characteristic, which further clarifies the advantage for dual pumping. The proposed dual 830 and 980 nm pumping scheme with the multicomponent BEDF shows great potential in various broadband optical applications such as uniform ASE source, broadband amplifier and tuneable laser in NIR band

    A Search for Spectral Galaxy Pairs of Overlapping Galaxies based on Fuzzy Recognition

    Full text link
    The Spectral Galaxy Pairs (SGPs) are defined as the composite galaxy spectra which contain two independent redshift systems. These spectra are useful for studying dust properties of the foreground galaxies. In this paper, a total of 165 spectra of SGPs are mined out from Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9) using the concept of membership degree from the fuzzy set theory particularly defined to be suitable for fuzzily identifying emission lines. The spectra and images of this sample are classified according to the membership degree and their image features, respectively. Many of these 2nd redshift systems are too small or too dim to select from the SDSS images alone, making the sample a potentially unique source of information on dust effects in low-luminosity or low-surface-brightness galaxies that are underrepresented in morphological pair samples. The dust extinction of the objects with high membership degree is also estimated by Balmer decrement. Additionally, analyses for a series of spectroscopic observations of one SGP from 165 systems indicate that a newly star-forming region of our Milky Way might occur.Comment: 16pages, 6figure

    Point-and-Shoot All-in-Focus Photo Synthesis from Smartphone Camera Pair

    Full text link
    All-in-Focus (AIF) photography is expected to be a commercial selling point for modern smartphones. Standard AIF synthesis requires manual, time-consuming operations such as focal stack compositing, which is unfriendly to ordinary people. To achieve point-and-shoot AIF photography with a smartphone, we expect that an AIF photo can be generated from one shot of the scene, instead of from multiple photos captured by the same camera. Benefiting from the multi-camera module in modern smartphones, we introduce a new task of AIF synthesis from main (wide) and ultra-wide cameras. The goal is to recover sharp details from defocused regions in the main-camera photo with the help of the ultra-wide-camera one. The camera setting poses new challenges such as parallax-induced occlusions and inconsistent color between cameras. To overcome the challenges, we introduce a predict-and-refine network to mitigate occlusions and propose dynamic frequency-domain alignment for color correction. To enable effective training and evaluation, we also build an AIF dataset with 2686 unique scenes. Each scene includes two photos captured by the main camera, one photo captured by the ultrawide camera, and a synthesized AIF photo. Results show that our solution, termed EasyAIF, can produce high-quality AIF photos and outperforms strong baselines quantitatively and qualitatively. For the first time, we demonstrate point-and-shoot AIF photo synthesis successfully from main and ultra-wide cameras.Comment: Early Access by IEEE Transactions on Circuits and Systems for Video Technology 202
    • …
    corecore