113 research outputs found

    Case Report: Durable complete response of metastatic hepatocellular carcinoma with asymptomatic hyperamylasemia to combined immunotherapy of anti-cytotoxic T lymphocyte-associated antigen 4 plus anti-programmed cell death-1 antibodies

    Get PDF
    BackgroundCombined immunotherapy has shown promising results in the treatment of advanced HCC, whereas the priority population that would respond to the combined immunotherapy is still elusive. In addition, HCC with asymptomatic hyperamylasemia was not reported previously.Case presentationAn aged patient was diagnosed as HCC with BCLC stage C (bone metastasis). Notably, this patient showed asymptomatic hyperamylasemia. The patient was then enrolled in a trial evaluating combined immunotherapy of anti-PD-1 antibody sintilimab (IBI308) plus anti-CTLA-4 antibody (IBI310) in advanced HCC. After being treated with combined immunotherapy, this patient rapidly achieved complete response (CR) according to mRECIST criteria or immune partial response (iPR) according to iRECIST criteria and maintain the CR state for more than 12 months. Interestingly, serum levels of amylase and lipase in this patient were reduced after treatment.ConclusionWe reported, for the first time, a case of metastatic HCC with asymptomatic hyperamylasemia, and suggested that HCC patients with asymptomatic hyperamylasemia may benefit from combined immunotherapy of anti-CTLA-4 and PD-1 antibodies

    Biological behaviors and proteomics analysis of hybrid cell line EAhy926 and its parent cell line A549

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well established that cancer cells can fuse with endothelial cells to form hybrid cells spontaneously, which facilitates cancer cells traversing the endothelial barrier to form metastases. However, up to now, little is known about the biologic characteristics of hybrid cells. Therefore, we investigate the malignant biologic behaviors and proteins expression of the hybrid cell line EAhy926 with its parent cell line A549.</p> <p>Methods</p> <p>Cell counting and flow cytometry assay were carried out to assess cell proliferation. The number of cells attached to the extracellular matrix (Matrigel) was measured by MTT assay for the adhesion ability of cells. Transwell chambers were established for detecting the ability of cell migration and invasion. Tumor xenograft test was carried out to observe tumorigenesis of the cell lines. In addition, two-dimensional electrophoresis (2-DE) and mass spectrometry were utilized to identify differentially expressed proteins between in Eahy926 cells and in A549 cells.</p> <p>Results</p> <p>The doubling time of EAhy926 cell and A549 cell proliferation was 25.32 h and 27.29 h, respectively (P > 0.1). Comparing the phase distribution of cell cycle of EAhy926 cells with that of A549 cells, the percentage of cells in G0/G1 phase, in S phase and in G2/M phase was (63.7% ± 2.65%) VS (60.0% ± 3.17%), (15.4% ± 1.52%) VS (13.8% ± 1.32%), and (20.9% ± 3.40%) VS (26.3% ± 3.17%), respectively (P > 0.05). For the ability of cell adhesion of EAhy926 cells and A549 cells, the value of OD in Eahy926 cells was significantly higher than that in A549 cells (0.3236 ± 0.0514 VS 0.2434 ± 0.0390, P < 0.004). We also found that the migration ability of Eahy926 cells was stronger than that of A549 cells (28.00 ± 2.65 VS 18.00 ± 1.00, P < 0.01), and that the invasion ability of Eahy926 cells was significantly weak than that of A549 cells (15.33 ± 0.58 VS 26.67 ± 2.52, P < 0.01). In the xenograft tumor model, expansive masses of classic tumor were found in the A549 cells group, while subcutaneous inflammatory focuses were found in the EAhy926 cells group. Besides, twenty-eight proteins were identified differentially expressed between in EAhy926 cells and in A549 cells by proteomics technologies.</p> <p>Conclusion</p> <p>As for the biological behaviors, the ability of cell proliferation in Eahy926 cells was similar to that in A549 cells, but the ability in adhesion and migration of Eahy926 cells was higher. In addition, Eahy926 cells had weaker ability in invasion and could not form tumor mass. Furthermore, there were many differently expressed proteins between hybrid cell line Eahy926 cells and A549 cells, which might partly account for some of the differences between their biological behaviors at the molecular level. These results may help to understand the processes of tumor angiogenesis, invasion and metastasis, and to search for screening method for more targets for tumor therapy in future.</p

    Cholesteryl ester transfer protein TaqIB polymorphism and its association with serum lipid levels and longevity in Chinese Bama Zhuang population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Taq</it>IB polymorphism in the cholesteryl ester transfer protein (CETP) gene has been reported to be associated with serum high-density lipoprotein cholesterol (HDL-C) levels and longevity in several populations, but controversial results also arose probably due to racial/ethnic diversity. Bama is a remote and mountainous county located in the northwest of Guangxi, People's Republic of China, which has been well known for its longevity for centuries. The current study was to investigate the possible association of CETP <it>Taq</it>IB polymorphism with serum lipid levels and longevity in the Bama Zhuang population.</p> <p>Methods</p> <p>The CETP <it>Taq</it>IB genotypes were determined by polymerase chain reaction and restriction fragment length polymorphism in 523 long-lived inhabitants (long-lived group, LG; aged 90-107 years) and 498 healthy controls without longevity family history (non-long-lived group, non-LG; aged 40-69 years) residing in Bama County.</p> <p>Results</p> <p>The levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were higher but TG, HDL-C/LDL-C ratio and the prevalence of dyslipidemia were lower in LG than in non-LG (<it>P </it>< 0.001 for all). There were no differences in the allelic and genotypic frequencies between the two groups (<it>P </it>> 0.05). Serum HDL-C levels and HDL-C/LDL-C ratio in LG were different among the genotypes (<it>P </it>< 0.01 for each), the subjects with B2B2 and B1B2 genotyes had higher HDL-C levels and HDL-C/LDL-C ratio than the subjects with B1B1genotye, whereas the levels of TC and HDL-C in non-LG were different among/between the genotypes (<it>P </it>< 0.01 for each), the B2 allele carriers had lower TC and higher HDL-C levels than the B2 allele noncarriers. Serum TG and HDL-C levels and HDL-C/LDL-C ratio were correlated with genotypes in LG, whereas serum TC and HDL-C levels were associated with genotypes in non-LG (<it>P </it>< 0.05-0.001).</p> <p>Conclusions</p> <p>The association of CETP <it>Taq</it>IB polymorphism and serum lipid profiles is different between LG and non-LG in the Chinese Bama Zhuang population. CETP <it>Taq</it>IB polymorphism might be one of the longevity-related genetic factors in this population.</p

    Responsiveness of voltage-gated calcium channels in SH-SY5Y human neuroblastoma cells on quasi-three-dimensional micropatterns formed with poly (l-lactic acid)

    Get PDF
    Introduction: In this study, quasi-three-dimensional (3D) microwell patterns were fabricated with poly (l-lactic acid) for the development of cell-based assays, targeting voltage-gated calcium channels (VGCCs). Methods and materials: SH-SY5Y human neuroblastoma cells were interfaced with the microwell patterns and found to grow as two dimensional (2D), 3D, and near two dimensional (N2D), categorized on the basis of the cells’ location in the pattern. The capability of the microwell patterns to support 3D cell growth was evaluated in terms of the percentage of the cells in each growth category. Cell spreading was analyzed in terms of projection areas under light microscopy. SH-SY5Y cells’ VGCC responsiveness was evaluated with confocal microscopy and a calcium fluorescent indicator, Calcium GreenTM-1. The expression of L-type calcium channels was evaluated using immunofluorescence staining with DM-BODIPY. Results: It was found that cells within the microwells, either N2D or 3D, showed more rounded shapes and less projection areas than 2D cells on flat poly (l-lactic acid) substrates. Also, cells in microwells showed a significantly lower VGCC responsiveness than cells on flat substrates, in terms of both response magnitudes and percentages of responsive cells, upon depolarization with 50 mM K+. This lower VGCC responsiveness could not be explained by the difference in L-type calcium channel expression. For the two patterns addressed in this study, N2D cells consistently exhibited an intermediate value of either projection areas or VGCC responsiveness between those for 2D and 3D cells, suggesting a correlative relation between cell morphology and VGCC responsiveness. Conclusion: These results suggest that the pattern structure and therefore the cell growth characteristics were critical factors in determining cell VGCC responsiveness and thus provide an approach for engineering cell functionality in cell-based assay systems and tissue engineering scaffolds

    The Survey of H5N1 Flu Virus in Wild Birds in 14 Provinces of China from 2004 to 2007

    Get PDF
    The highly pathogenic H5N1 avian influenza emerged in the year 1996 in Asia, and has spread to Europe and Africa recently. At present, effective monitoring and data analysis of H5N1 are not sufficient in Chinese mainland.)) were obviously higher than those in other 13 provinces. The results of sequence analysis indicated that the 17 strains isolated from wild birds were distributed in five clades (2.3.1, 2.2, 2.5, 6, and 7), which suggested that genetic diversity existed among H5N1 viruses isolated from wild birds. The five isolates from Qinghai came from one clade (2.2) and had a short evolutionary distance with the isolates obtained from Qinghai in the year 2005.We have measured the prevalence of H5N1 virus in 56 species of wild birds in 14 provinces of China. Continuous monitoring in the field should be carried out to know whether H5N1 virus can be maintained by wild birds

    Redefining cardiac biomarkers in predicting mortality and adverse outcomes of inpatients with COVID-19

    Get PDF
    The prognostic power of circulating cardiac biomarkers, their utility and pattern of release in coronavirus disease 2019 (COVID-19) patients have not been clearly defined. In this multi-centered retrospective study, we enrolled 3,219 patients with diagnosed COVID-19 admitted to 9 hospitals from December 31, 2019 to March 4, 2020, to estimate the associations and prognostic power of circulating cardiac injury markers with the poor outcomes of COVID-19. In the mixed-effect Cox model, after adjusting for age, gender and comorbidities, the adjusted hazard ratios of 28-day mortality for high-sensitivity cardiac troponin I (hs-cTnI) was 7.12 (95%CI, 4.60-11.03; P&lt;0.001), NT-proB-type natriuretic peptide (NT-proBNP) was 5.11 (95%CI, 3.50-7.47; P&lt;0.001), CK-MB was 4.86 (95%CI, 3.33-7.09; P&lt;0.001), myoglobin was 4.50 (95%CI, 3.18-6.36; P &lt; 0.001), and CK was 3.56 (95%CI, 2.53-5.02; P &lt; 0.001). The cutoffs of those cardiac biomarkers for effective prognosis of 28-day mortality of COVID-19 were found to be much lower than for regular heart disease at about 49% of the currently recommended thresholds. Patients with elevated cardiac injury markers above the newly established cutoffs were associated with significantly increased risk of COVID-19 death. In conclusion, cardiac biomarker elevations are significantly associated with 28-day death in patients with COVID-19. The prognostic cutoffs for of these values might be much lower than the current reference standards. These findings can assist better management of COVID-19 patients to improve outcomes. Importantly, the newly established cutoff levels of COVID-19 associated cardiac biomarkers may serve as useful criteria for the future prospective studies and clinical trials

    Redefining Cardiac Biomarkers in Predicting Mortality of Inpatients With COVID-19

    Get PDF
    The prognostic power of circulating cardiac biomarkers, their utility, and pattern of release in coronavirus disease 2019 (COVID-19) patients have not been clearly defined. In this multicentered retrospective study, we enrolled 3219 patients with diagnosed COVID-19 admitted to 9 hospitals from December 31, 2019 to March 4, 2020, to estimate the associations and prognostic power of circulating cardiac injury markers with the poor outcomes of COVID-19. In the mixed-effects Cox model, after adjusting for age, sex, and comorbidities, the adjusted hazard ratio of 28-day mortality for hs-cTnI (high-sensitivity cardiac troponin I) was 7.12 ([95% CI, 4.60-11.03] P\u3c0.001), (NT-pro)BNP (N-terminal pro-B-type natriuretic peptide or brain natriuretic peptide) was 5.11 ([95% CI, 3.50-7.47] P\u3c0.001), CK (creatine phosphokinase)-MB was 4.86 ([95% CI, 3.33-7.09] P\u3c0.001), MYO (myoglobin) was 4.50 ([95% CI, 3.18-6.36] P\u3c0.001), and CK was 3.56 ([95% CI, 2.53-5.02] P\u3c0.001). The cutoffs of those cardiac biomarkers for effective prognosis of 28-day mortality of COVID-19 were found to be much lower than for regular heart disease at about 19%-50% of the currently recommended thresholds. Patients with elevated cardiac injury markers above the newly established cutoffs were associated with significantly increased risk of COVID-19 death. In conclusion, cardiac biomarker elevations are significantly associated with 28-day death in patients with COVID-19. The prognostic cutoff values of these biomarkers might be much lower than the current reference standards. These findings can assist in better management of COVID-19 patients to improve outcomes. Importantly, the newly established cutoff levels of COVID-19-associated cardiac biomarkers may serve as useful criteria for the future prospective studies and clinical trials

    Systems Biology Modeling Reveals a Possible Mechanism of the Tumor Cell Death upon Oncogene Inactivation in EGFR Addicted Cancers

    Get PDF
    Despite many evidences supporting the concept of “oncogene addiction” and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR) associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K)/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1)/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential) due to the elevated level of reactive oxygen species (ROS) is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore