34,792 research outputs found

    Probing the QCD Critical Point with Higher Moments of Net-proton Multiplicity Distributions

    Full text link
    Higher moments of event-by-event net-proton multiplicity distributions are applied to search for the QCD critical point in the heavy ion collisions. It has been demonstrated that higher moments as well as moment products are sensitive to the correlation length and directly connected to the thermodynamic susceptibilities computed in the Lattice QCD and Hadron Resonance Gas (HRG) model. In this paper, we will present measurements for kurtosis (κ\kappa), skewness (SS) and variance (σ2\sigma^{2}) of net-proton multiplicity distributions at the mid-rapidity (y<0.5|y|<0.5) and 0.4<pT<0.80.4<p_{T}<0.8 GeV/cc for Au+Au collisions at sNN\sqrt{s_{NN}}=19.6, 39, 62.4, 130 and 200 GeV, Cu+Cu collisions at sNN\sqrt{s_{NN}}=22.4, 62.4 and 200 GeV, d+Au collisions at sNN\sqrt{s_{NN}}=200 GeV and p+p collisions at sNN\sqrt{s_{NN}}=62.4 and 200 GeV. The moment products κσ2\kappa \sigma^{2} and SσS \sigma of net-proton distributions, which are related to volume independent baryon number susceptibility ratio, are compared to the Lattice QCD and HRG model calculations. The κσ2\kappa \sigma^{2} and SσS \sigma of net-proton distributions are consistent with Lattice QCD and HRG model calculations at high energy, which support the thermalization of the colliding system. Deviations of κσ2\kappa \sigma^{2} and SσS \sigma for the Au+Au collisions at low energies from HRG model calculations are also observed.Comment: 10 pages, 8 figures, Proceedings of 27th Winter Workshon on Nuclear Dynamics. Feb. 6-13 (2011

    Exotic mesons from quantum chromodynamics with improved gluon and quark actions on the anisotropic lattice

    Full text link
    Hybrid (exotic) mesons, which are important predictions of quantum chromodynamics (QCD), are states of quarks and anti-quarks bound by excited gluons. First principle lattice study of such states would help us understand the role of ``dynamical'' color in low energy QCD and provide valuable information for experimental search for these new particles. In this paper, we apply both improved gluon and quark actions to the hybrid mesons, which might be much more efficient than the previous works in reducing lattice spacing error and finite volume effect. Quenched simulations were done at β=2.6\beta=2.6 and on a ξ=3\xi=3 anisotropic 123×3612^3\times36 lattice using our PC cluster. We obtain 2013±26±712013 \pm 26 \pm 71 MeV for the mass of the 1+1^{-+} hybrid meson qˉqg{\bar q}qg in the light quark sector, and 4369±37±994369 \pm 37 \pm 99Mev in the charm quark sector; the mass splitting between the 1+1^{-+} hybrid meson cˉcg{\bar c}c g in the charm quark sector and the spin averaged S-wave charmonium mass is estimated to be 1302±37±991302 \pm 37 \pm 99 MeV. As a byproduct, we obtain 1438±32±571438 \pm 32 \pm 57 MeV for the mass of a P-wave 1++1^{++} uˉu{\bar u}u or dˉd{\bar d}d meson and 1499±28±651499 \pm 28 \pm 65 MeV for the mass of a P-wave 1++1^{++} sˉs{\bar s}s meson, which are comparable to their experimental value 1426 MeV for the f1(1420)f_1(1420) meson. The first error is statistical, and the second one is systematical. The mixing of the hybrid meson with a four quark state is also discussed.Comment: 12 pages, 3 figures. Published versio

    Null Result for the Violation of Equivalence Principle with Free-Fall Rotating Gyroscopes

    Get PDF
    The differential acceleration between a rotating mechanical gyroscope and a non-rotating one is directly measured by using a double free-fall interferometer, and no apparent differential acceleration has been observed at the relative level of 2x10{-6}. It means that the equivalence principle is still valid for rotating extended bodies, i.e., the spin-gravity interaction between the extended bodies has not been observed at this level. Also, to the limit of our experimental sensitivity, there is no observed asymmetrical effect or anti-gravity of the rotating gyroscopes as reported by hayasaka et al.Comment: REVTeX 3.0, 7 pages with 4 Postscript figure

    Improved lattice QCD with quarks: the 2 dimensional case

    Get PDF
    QCD in two dimensions is investigated using the improved fermionic lattice Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved theory leads to a significant reduction of the finite lattice spacing errors. The quark condensate and the mass of lightest quark and anti-quark bound state in the strong coupling phase (different from t'Hooft phase) are computed. We find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures

    Root exudates increase metal accumulation in mixed cultures : implications for naturally enhanced phytoextraction

    Get PDF
    Author name used in this publication: Chun Ling LuoAuthor name used in this publication: Zhen Guo ShenAuthor name used in this publication: Xiang Dong Li2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
    corecore