51,043 research outputs found
In-plane ferromagnetism in charge-ordering
The magnetic and transport properties are systematically studied on the
single crystal with charge ordering and divergency in
resistivity below 50 K. A long-range ferromagnetic ordering is observed in
susceptibility below 20 K with the magnetic field parallel to Co-O plane, while
a negligible behavior is observed with the field perpendicular to the Co-O
plane. It definitely gives a direct evidence for the existence of in-plane
ferromagnetism below 20 K. The observed magnetoresistance (MR) of 30 % at the
field of 6 T at low temperatures indicates an unexpectedly strong spin-charge
coupling in triangle lattice systems.Comment: 4 pages, 5 figure
The perfect spin injection in silicene FS/NS junction
We theoretically investigate the spin injection from a ferromagnetic silicene
to a normal silicene (FS/NS), where the magnetization in the FS is assumed from
the magnetic proximity effect. Based on a silicene lattice model, we
demonstrated that the pure spin injection could be obtained by tuning the Fermi
energy of two spin species, where one is in the spin orbit coupling gap and the
other one is outside the gap. Moreover, the valley polarity of the spin species
can be controlled by a perpendicular electric field in the FS region. Our
findings may shed light on making silicene-based spin and valley devices in the
spintronics and valleytronics field.Comment: 6 pages, 3 figure
Improved three-dimensional color-gradient lattice Boltzmann model for immiscible multiphase flows
In this paper, an improved three-dimensional color-gradient lattice Boltzmann
(LB) model is proposed for simulating immiscible multiphase flows. Compared
with the previous three-dimensional color-gradient LB models, which suffer from
the lack of Galilean invariance and considerable numerical errors in many cases
owing to the error terms in the recovered macroscopic equations, the present
model eliminates the error terms and therefore improves the numerical accuracy
and enhances the Galilean invariance. To validate the proposed model, numerical
simulation are performed. First, the test of a moving droplet in a uniform flow
field is employed to verify the Galilean invariance of the improved model.
Subsequently, numerical simulations are carried out for the layered two-phase
flow and three-dimensional Rayleigh-Taylor instability. It is shown that, using
the improved model, the numerical accuracy can be significantly improved in
comparison with the color-gradient LB model without the improvements. Finally,
the capability of the improved color-gradient LB model for simulating dynamic
multiphase flows at a relatively large density ratio is demonstrated via the
simulation of droplet impact on a solid surface.Comment: 9 Figure
Integer quantum Hall effect and topological phase transitions in silicene
We numerically investigate the effects of disorder on the quantum Hall effect
(QHE) and the quantum phase transitions in silicene based on a lattice model.
It is shown that for a clean sample, silicene exhibits an unconventional QHE
near the band center, with plateaus developing at and
a conventional QHE near the band edges. In the presence of disorder, the Hall
plateaus can be destroyed through the float-up of extended levels toward the
band center, in which higher plateaus disappear first. However, the center
Hall plateau is more sensitive to disorder and disappears at a
relatively weak disorder strength. Moreover, the combination of an electric
field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase
transitions from a topological insulator to a band insulator at the charge
neutrality point (CNP), accompanied by additional quantum Hall conductivity
plateaus.Comment: 7 pages, 4 figure
- …