33,610 research outputs found

    Comment on "Time-Dependent Density-Matrix Renormalization Group: A Systematic Method for the Study of Quantum Many-Body Out-of- Equilibrium Systems"

    Full text link
    In a recent Letter [Phys. Rev. Lett. 88, 256403(2002), cond-mat/0109158] Cazalilla and Marston proposed a time-dependent density- matrix renormalization group (TdDMRG) algorithm for the accurate evaluation of out-of-equilibrium properties of quantum many-body systems. For a point contact junction between two Luttinger liquids, a current oscillation develops after initial transient in the insulating regime. Here we would like to point out that (a) the observed oscillation is an artifact of the method; (b) the TdDMRG can be significantly improved by incorporating the non-equilibrium evolution of the goundstate into the density matrix.Comment: 1 page, 2 figure

    Improved lattice QCD with quarks: the 2 dimensional case

    Get PDF
    QCD in two dimensions is investigated using the improved fermionic lattice Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved theory leads to a significant reduction of the finite lattice spacing errors. The quark condensate and the mass of lightest quark and anti-quark bound state in the strong coupling phase (different from t'Hooft phase) are computed. We find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures

    In-plane ferromagnetism in charge-ordering Na0.55CoO2Na_{0.55}CoO_2

    Full text link
    The magnetic and transport properties are systematically studied on the single crystal Na0.55CoO2Na_{0.55}CoO_2 with charge ordering and divergency in resistivity below 50 K. A long-range ferromagnetic ordering is observed in susceptibility below 20 K with the magnetic field parallel to Co-O plane, while a negligible behavior is observed with the field perpendicular to the Co-O plane. It definitely gives a direct evidence for the existence of in-plane ferromagnetism below 20 K. The observed magnetoresistance (MR) of 30 % at the field of 6 T at low temperatures indicates an unexpectedly strong spin-charge coupling in triangle lattice systems.Comment: 4 pages, 5 figure

    Visualizing urban microclimate and quantifying its impact on building energy use in San Francisco

    Get PDF
    Weather data at nearby airports are usually used in building energy simulation to estimate energy use in buildings or evaluate building design or retrofit options. However, due to urbanization and geography characteristics, local weather conditions can differ significantly from those at airports. This study presents the visualization of 10-year hourly weather data measured at 27 sites in San Francisco, aiming to provide insights into the urban microclimate and urban heat island effect in San Francisco and how they evolve during the recent decade. The 10-year weather data are used in building energy simulations to investigate its influence on energy use and electrical peak demand, which informs the city's policy making on building energy efficiency and resilience. The visualization feature is implemented in CityBES, an open web-based data and computing platform for urban building energy research

    Full Wave Form Inversion for Seismic Data

    Get PDF
    In seismic wave inversion, seismic waves are sent into the ground and then observed at many receiving points with the aim of producing high-resolution images of the geological underground details. The challenge presented by Saudi Aramco is to solve the inverse problem for multiple point sources on the full elastic wave equation, taking into account all frequencies for the best resolution. The state-of-the-art methods use optimisation to find the seismic properties of the rocks, such that when used as the coefficients of the equations of a model, the measurements are reproduced as closely as possible. This process requires regularisation if one is to avoid instability. The approach can produce a realistic image but does not account for uncertainty arising, in general, from the existence of many different patterns of properties that also reproduce the measurements. In the Study Group a formulation of the problem was developed, based upon the principles of Bayesian statistics. First the state-of-the-art optimisation method was shown to be a special case of the Bayesian formulation. This result immediately provides insight into the most appropriate regularisation methods. Then a practical implementation of a sequential sampling algorithm, using forms of the Ensemble Kalman Filter, was devised and explored

    Novel dynamical effects and glassy response in strongly correlated electronic system

    Full text link
    We find an unconventional nucleation of low temperature paramagnetic metal (PMM) phase with monoclinic structure from the matrix of high-temperature antiferromagnetic insulator (AFI) phase with tetragonal structure in strongly correlated electronic system BaCo0.9Ni0.1S1.97BaCo_{0.9}Ni_{0.1}S_{1.97}. Such unconventional nucleation leads to a decease in resistivity by several orders with relaxation at a fixed temperature without external perturbation. The novel dynamical process could arise from the competition of strain fields, Coulomb interactions, magnetic correlations and disorders. Such competition may frustrate the nucleation, giving rise to a slow, nonexponential relaxation and "physical aging" behavior.Comment: 5 pages, 4 figure

    Hysteresis and Anisotropic Magnetoresistance in Antiferromagnetic Nd2xCexCuO4Nd_{2-x}Ce_xCuO_{4}

    Full text link
    The out-of-plane resistivity (ρc\rho_c) and magnetoresistivity (MR) are studied in antiferromangetic (AF) Nd2xCexCuO4Nd_{2-x}Ce_xCuO_{4} single crystals, which have three types of noncollinear antiferromangetic spin structures. The apparent signatures are observed in ρc(T)\rho_c(T) measured at the zero-field and 14 T at the spin structure transitions, giving a definite evidence for the itinerant electrons directly coupled to the localized spins. One of striking feature is an anisotropy of the MR with a fourfold symmetry upon rotating the external field (B) within ab plane in the different phases, while twofold symmetry at spin reorientation transition temperatures. The intriguing thermal hysteresis in ρc(T,B)\rho_c(T,B) and magnetic hysteresis in MR are observed at spin reorientation transition temperatures.Comment: 4 pages, 4 figure

    Oxygen Isotope Effect on the Spin State Transition in (Pr0.7_{0.7}Sm0.3_{0.3})0.7_{0.7}Ca0.3_{0.3}CoO3{_3}

    Full text link
    Oxygen isotope substitution is performed in the perovskite cobalt oxide (Pr0.7_{0.7}Sm0.3_{0.3})0.7_{0.7}Ca0.3_{0.3}CoO3{_3} which shows a sharp spin state transition from the intermediate spin (IS) state to the low spin (LS) state at a certain temperature. The transition temperature of the spin state up-shifts with the substitution of 16O^{16}O by 18^{18}O from the resistivity and magnetic susceptibility measurements. The up-shift value is 6.8 K and an oxygen isotope exponent (αS\alpha_S) is about -0.8. The large oxygen isotope effect indicates strong electron-phonon coupling in this material. The substitution of 16^{16}O by 18^{18}O leads to a decrease in the frequency of phonon and an increase in the effective mass of electron (mm^\ast), so that the bandwidth W is decreased and the energy difference between the different spin states is increased. This is the reason why the TsT_s is shifted to high temperature with oxygen isotopic exchange.Comment: 4 pages, 3 figure

    Dimensional crossover and anomalous magnetoresistivity in single crystals NaxCoO2Na_xCoO_2

    Full text link
    The in-plane (ρab\rho_{ab}) and c-axis (ρc\rho_c) resistivities, and the magnetoresistivity of single crystals NaxCoO2Na_xCoO_2 with x = 0.7, 0.5 and 0.3 were studied systematically. ρab(T)\rho_{ab}(T) shows similar temperature dependence between Na0.3CoO2Na_{0.3}CoO_2 and Na0.7CoO2Na_{0.7}CoO_2, while ρc(T)\rho_c(T) is quite different. A dimensional crossover from two to three occurs with decreasing Na concentration from 0.7 to 0.3. The angular dependence of in-plane magnetoresistivity for 0.5 sample shows a \emph{"d-wave-like"} symmetry at 2K, while the \emph{"p-wave-like"} symmetry at 20 K. These results give an evidence for existence of a \emph{spin ordering orientation} below 20 K turned by external field, like the stripes in cuprates.Comment: 4 pages, 3 figure
    corecore