33,483 research outputs found
Improved lattice QCD with quarks: the 2 dimensional case
QCD in two dimensions is investigated using the improved fermionic lattice
Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved
theory leads to a significant reduction of the finite lattice spacing errors.
The quark condensate and the mass of lightest quark and anti-quark bound state
in the strong coupling phase (different from t'Hooft phase) are computed. We
find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures
Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway.
BACKGROUND: Tick-borne encephalitis virus (TBEV) is one of the most important flaviviruses that targets the central nervous system (CNS) and causes encephalitides in humans. Although neuroinflammatory mechanisms may contribute to brain tissue destruction, the induction pathways and potential roles of specific chemokines in TBEV-mediated neurological disease are poorly understood. METHODS: BALB/c mice were intracerebrally injected with TBEV, followed by evaluation of chemokine and cytokine profiles using protein array analysis. The virus-infected mice were treated with the CC chemokine antagonist Met-RANTES or anti-RANTES mAb to determine the role of RANTES in affecting TBEV-induced neurological disease. The underlying signaling mechanisms were delineated using RANTES promoter luciferase reporter assay, siRNA-mediated knockdown, and pharmacological inhibitors in human brain-derived cell culture models. RESULTS: In a mouse model, pathological features including marked inflammatory cell infiltrates were observed in brain sections, which correlated with a robust up-regulation of RANTES within the brain but not in peripheral tissues and sera. Antagonizing RANTES within CNS extended the survival of mice and reduced accumulation of infiltrating cells in the brain after TBEV infection. Through in vitro studies, we show that virus infection up-regulated RANTES production at both mRNA and protein levels in human brain-derived cell lines and primary progenitor-derived astrocytes. Furthermore, IRF-3 pathway appeared to be essential for TBEV-induced RANTES production. Site mutation of an IRF-3-binding motif abrogated the RANTES promoter activity in virus-infected brain cells. Moreover, IRF-3 was activated upon TBEV infection as evidenced by phosphorylation of TBK1 and IRF-3, while blockade of IRF-3 activation drastically reduced virus-induced RANTES expression. CONCLUSIONS: Our findings together provide insights into the molecular mechanism underlying RANTES production induced by TBEV, highlighting its potential importance in the process of neuroinflammatory responses to TBEV infection
Six-dimensional weak-strong simulations of head-on beam-beam compensation in RHIC
To compensate the large beam-beam tune spread and beam-beam resonance driving
terms in the polarized proton operation in the Relativistic Heavy Ion Collider
(RHIC), we will introduce a low-energy DC electron beam into each ring to
collide head-on with the opposing proton beam. The device to provide the
electron beam is called an electron lens. In this article, using a 6-D
weak-strong-beam-beam interaction simulation model, we investigate the effects
of head-on beam-beam compensation with electron lenses on the proton beam
dynamics in the RHIC 250 GeV polarized proton operation. This article is
abridged from the published article [1].Comment: 5 pages, contribution to the ICFA Mini-Workshop on Beam-Beam Effects
in Hadron Colliders, CERN, Geneva, Switzerland, 18-22 Mar 201
Atomic scale friction studies on single crystal GaAs using AFM and molecular dynamics simulation
This paper provides a fresh perspective and new insights on the nanoscale friction investigated using molecular dynamics simulation and atomic force microscope (AFM) nanoscratch experiments. The work considered Gallium Arsenide, an important III-V direct bandgap semiconductor material residing in the zinc-blende structure as a reference sample material due to its growing usage in 5G communication devices. In the simulations, the scratch depth was tested as a variable in the fine range of 0.5 nm to 3 nm to understand the behaviour of material removal as well as to gain insights into the nanoscale friction. Scratch force, normal force and average cutting forces were extracted from the simulation to obtain two scalar quantities namely, the scratch cutting energy (defined as the work done in removing a unit volume of material) and kinetic coefficient of friction (defined as the force ratio). A strong size effect was observed for scratch depths below 2 nanometres from the MD simulations and about 15 nm from the AFM experiments. A strong quantitative corroboration was obtained between the MD simulations and the AFM experiments in the specific scratch energy and more qualitative corroboration with the pile up and the kinetic coefficient of friction. This conclusion suggested that the specific scratch energy is insensitive to the tool geometry and the speed of scratch used in this investigation but the pile up and kinetic coefficient of friction are dependent on the geometry of the tool tip
Beating of the oscillations in the transport coefficients of a one-dimensionally periodically modulated two-dimensional electron gas in the presence of spin-orbit interaction
Transport properties of a two-dimensional electron gas (2DEG) are studied in
the presence of a perpendicular magnetic field , of a {\it weak}
one-dimensional (1D) periodic potential modulation, and of the spin-orbit
interaction (SOI) described only by the Rashba term. In the absence of the
modulation the SOI mixes the spin-up and spin-down states of neighboring Landau
levels into two new, unequally spaced energy branches. The levels of these
branches broaden into bands in the presence of the modulation and their
bandwidths oscillate with the field . Evaluated at the Fermi energy, the
-th level bandwidth of each series has a minimum or vanishes at different
values of the field . In contrast with the 1D-modulated 2DEG without SOI,
for which only one flat-band condition applies, here there are two flat-band
conditions that can change considerably as a function of the SOI strength
and accordingly influence the transport coefficients of the 2DEG. The
phase and amplitude of the Weiss and Shubnikov-de Haas (SdH) oscillations
depend on the strength . For small values of both oscillations
show beating patterns. Those of the former are due to the independently
oscillating bandwidths whereas those of the latter are due to modifications of
the density of states, exhibit an even-odd filling factor transition, and are
nearly independent of the modulation strength. For strong values of
the SdH oscillations are split in two
Dimensional crossover and anomalous magnetoresistivity in single crystals
The in-plane () and c-axis () resistivities, and the
magnetoresistivity of single crystals with x = 0.7, 0.5 and 0.3
were studied systematically. shows similar temperature
dependence between and , while is
quite different. A dimensional crossover from two to three occurs with
decreasing Na concentration from 0.7 to 0.3. The angular dependence of in-plane
magnetoresistivity for 0.5 sample shows a \emph{"d-wave-like"} symmetry at 2K,
while the \emph{"p-wave-like"} symmetry at 20 K. These results give an evidence
for existence of a \emph{spin ordering orientation} below 20 K turned by
external field, like the stripes in cuprates.Comment: 4 pages, 3 figure
- …