7,699 research outputs found

    Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator

    Full text link
    Photo-transmutation of long-lived nuclear waste induced by high-charge relativistic electron beam (e-beam) from laser plasma accelerator is demonstrated. Collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 10^{11} per laser shot. Taking long-lived radionuclide ^{126}Sn as an example, the resulting transmutation reaction yield is the order of 10^{9} per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.Comment: 13 pages, 8 figures, it has been submitted to Physics of Plasm

    Identification of phosphorylated proteins in response to salt stress in wheat embryo and endosperm during seed germination

    Get PDF
    Seed germination is a new beginning for the crop life cycle, which is closely related to seed sprouting and subsequent plant growth and development, and ultimately affects grain yield and quality. Salt stress is one of the most important abiotic stress factors that restrict crop production. Therefore, it is highly important to improve crop salt tolerance and sufficient utilization of saline-alkali land. In this study, we identified the phosphorylated proteins involved in salt stress response by combining SEM, 2-DE, Pro-Q Diamond staining and tandem mass spectrometry. The results showed that salt stress significantly inhibited seed germination and starch degradation. In total, 14 phosphorylated protein spots (11 unique proteins) in the embryo and 6 phosphorylated protein spots (4 unique proteins) in the endosperm were identified, which mainly involved in stress/defense, protein metabolism and energy metabolism. The phosphorylation of some proteins such as cold regulated proteins, 27K protein, EF-1β and superoxide dismutase could play important roles in salt stress tolerance

    Phase diagram as a function of doping level and pressure in Eu1−x_{1-x}Lax_xFe2_2As2_2 system

    Full text link
    We establish the phase diagram of Eu1−x_{1-x}Lax_xFe2_2As2_2 system as a function of doping level x and the pressure by measuring the resistivity and magnetic susceptibility. The pressure can suppress the spin density wave (SDW) and structural transition very efficiently, while enhance the antiferromagnetic (AFM) transition temperature TN_N of Eu2+^{2+}. The superconductivity coexists with SDW order at the low pressure, while always coexists with the Eu2+^{2+} AFM order. The results suggests that Eu2+^{2+} spin dynamics is disentangeld with superconducting (SC) pairing taken place in the two-dimensional \emph{Fe-As} plane, but it can strongly affect superconducting coherence along c-axis

    Use of adaptive thermal storage system as smart load for voltage control and demand response

    Get PDF
    This paper describes how a large-scale ice-thermal storage can be turned into a smart load for fast voltage control and demand-side management in power systems with intermittent renewable power, while maintaining its existing function of load shaving. The possibility of modifying a conventional thermal load has been practically demonstrated in a refrigerator using power electronics technology. With the help of an electric spring, the modified thermal load can reduce power imbalance in buildings while providing active and reactive power compensation for the power grid. Based on practical data, a building energy model incorporating a large-scale ice-thermal storage system has been successfully used to demonstrate the advantageous demand-response features using computer simulation of both grid connected and isolated power systems. The results indicate the potential of using ice-thermal storage in tall buildings in reducing voltage and frequency fluctuations in weak power grids
    • …
    corecore