2 research outputs found

    Airborne LiDAR Point Cloud Filtering by a Multilevel Adaptive Filter Based on Morphological Reconstruction and Thin Plate Spline Interpolation

    No full text
    Point cloud filtering is a crucial step in most airborne light detection and ranging (LiDAR) applications. Many filtering algorithms have been proposed, but the filtering effect has some limitations in complex environments. To improve the filtering effect in complex terrain, a multilevel adaptive filter (MAF) combining morphological reconstruction and thin plate spline (TPS) interpolation is proposed. The digital elevation model (DEM) generated in each iteration is used as the marker image for morphological reconstruction to extract ground pixels, and an adaptive residual threshold is achieved by using terrain gradient as a compensation. The benchmark dataset provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) and another LiDAR dataset in northwestern China were used to evaluate the filtering performance of MAF. For the ISPRS benchmark dataset, MAF obtained the lowest average total error (3.72%) and highest average kappa coefficient (87.16%) compared with eight classic filtering algorithms. For the dataset in northwestern China, the DEM generated from the filtering result of MAF obtained higher accuracy than the filtering result of TerraScan. Overall, the MAF achieved promising results without considering the selection of filtering window, which may enhance the robustness and applicability of the algorithm in different environments

    Astrodynamical Space Test of Relativity Using Optical Devices I (ASTROD I)—A class-M fundamental physics mission proposal for Cosmic Vision 2015–2025

    Get PDF
    ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test general relativity with an improvement in sensitivity of over three orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is an international project, with major contributions from Europe and China and is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals. A second mission, ASTROD (ASTROD II) is envisaged as a three-spacecraft mission which would test General Relativity to 1 ppb, enable detection of solar g-modes, measure the solar Lense–Thirring effect to 10 ppm, and probe gravitational waves at frequencies below the LISA bandwidth. In the third phase (ASTROD III or Super-ASTROD), larger orbits could be implemented to map the outer solar system and to probe primordial gravitational-waves at frequencies below the ASTROD II bandwidth
    corecore