49 research outputs found

    SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers

    Full text link
    This paper aims to improve the performance of text-to-SQL parsing by exploring the intrinsic uncertainties in the neural network based approaches (called SUN). From the data uncertainty perspective, it is indisputable that a single SQL can be learned from multiple semantically-equivalent questions.Different from previous methods that are limited to one-to-one mapping, we propose a data uncertainty constraint to explore the underlying complementary semantic information among multiple semantically-equivalent questions (many-to-one) and learn the robust feature representations with reduced spurious associations. In this way, we can reduce the sensitivity of the learned representations and improve the robustness of the parser. From the model uncertainty perspective, there is often structural information (dependence) among the weights of neural networks. To improve the generalizability and stability of neural text-to-SQL parsers, we propose a model uncertainty constraint to refine the query representations by enforcing the output representations of different perturbed encoding networks to be consistent with each other. Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms strong competitors and achieves new state-of-the-art results. For reproducibility, we release our code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/sunsql.Comment: Accepted at COLING 202

    Effect of saline stress on the physiology and growth of maize hybrids and their related inbred lines

    Get PDF
    Salinity is one major abiotic stress that restrict plant growth and crop productivity. In maize (Zea mays L), salt stress causes significant yield loss each year. However, indices of maize response to salt stress are not completely explored and a desired method for maize salt tolerance evaluation is still not established. A Chinese leading maize variety Jingke968 showed various resistance to environmental factors, including salt stress. To compare its salt tolerance to other superior maize varieties, we examined the physiological and growth responses of three important maize hybrids and their related inbred lines under the control and salt stress conditions. By compar- ing the physiological parameters under control and salt treatment, we demonstrated that different salt tolerance mechanisms may be involved in different genotypes, such as the elevation of superoxide dismutase activity and/ or proline content. With Principal Component Analysis of all the growth indicators in both germination and seedling stages, along with the germination rate, superoxide dismutase activity, proline content, malondialdehyde content, relative electrolyte leakage, we were able to show that salt resistance levels of hybrids and their related inbred lines were Jingke968 > Zhengdan958 > X1132 and X1132M > Jing724 > Chang7-2 > Zheng58 > X1132F, respectively, which was consistent with the saline field observation. Our results not only contribute to a better understanding of salt stress response in three important hybrids and their related inbred lines, but also this evaluation system might be applied for an accurate assessment of salt resistance in other germplasms and breeding material

    Evidence of Noncollinear Spin Texture in Magnetic Moir\'e Superlattices

    Full text link
    Moir\'e magnetism, parallel with moir\'e electronics that has led to novel correlated and topological electronic states, emerges as a new venue to design and control exotic magnetic phases in twisted magnetic two-dimensional(2D) crystals. Here, we report direct evidence of noncollinear spin texture in 2D twisted double bilayer (tDB) magnet chromium triiodide (CrI3_3). Using magneto-optical spectroscopy in tDB CrI3_3, we revealed the presence of a net magnetization, unexpected from the composing antiferromagnetic bilayers with compensated magnetizations, and the emergence of noncollinear spins, originated from the moir\'e exchange coupling-induced spin frustrations. Exploring the twist angle dependence, we demonstrated that both features are present in tDB CrI3_3 with twist angles from 0.5o^o to 5o^o, but are most prominent in the 1.1o^o tDB CrI3_3. Focusing on the temperature dependence of the 1.1o^o tDB CrI3_3, we resolved the dramatic suppression in the net magnetization onset temperature and the significant softening of noncollinear spins, as a result of the moir\'e induced frustration. Our results demonstrate the power of moir\'e superlattices in introducing novel magnetic phenomena that are absent in natural 2D magnets

    Magnetic field-induced quantum phase transitions in a van der Waals magnet

    Full text link
    Exploring new parameter regimes to realize and control novel phases of matter has been a main theme in modern condensed matter physics research. The recent discovery of 2D magnetism in nearly freestanding monolayer atomic crystals has already led to observations of a number of novel magnetic phenomena absent in bulk counterparts. Such intricate interplays between magnetism and crystalline structures provide ample opportunities for exploring quantum phase transitions in this new 2D parameter regime. Here, using magnetic field and temperature dependent circularly polarized Raman spectroscopy of phonons and magnons, we map out the phase diagram of CrI3 that has been known to be a layered AFM in its 2D films and a FM in its 3D bulk. We, however, reveal a novel mixed state of layered AFM and FM in 3D CrI3 bulk crystals where the layered AFM survives in the surface layers and the FM appears in deeper bulk layers. We then show that the surface layered AFM transits into the FM at a critical magnetic field of 2 T, similar to what was found in the few layer case. Interestingly, concurrent with this magnetic phase transition, we discover a first-order structural phase transition that alters the crystallographic point group from C3i to C2h and thus, from a symmetry perspective, this monoclinic structural phase belongs to the 3D nematic order universality class. Our result not only unveils the complex single magnon behavior in 3D CrI3, but also settles down the puzzle of how CrI3 transits from a bulk FM to a thin layered AFM semiconductor, despite recent efforts in understanding the origin of layered AFM in CrI3 thin layer, and reveals the intimate relationship between the layered AFM-to-FM and the crystalline rhombohedral-to-monoclinic phase transitions. These findings further open up opportunities for future 2D magnet-based magneto-mechanical devices

    Exploring the Potential of Integrated Optical Sensing and Communication (IOSAC) Systems with Si Waveguides for Future Networks

    Full text link
    Advanced silicon photonic technologies enable integrated optical sensing and communication (IOSAC) in real time for the emerging application requirements of simultaneous sensing and communication for next-generation networks. Here, we propose and demonstrate the IOSAC system on the silicon nitride (SiN) photonics platform. The IOSAC devices based on microring resonators are capable of monitoring the variation of analytes, transmitting the information to the terminal along with the modulated optical signal in real-time, and replacing bulk optics in high-precision and high-speed applications. By directly integrating SiN ring resonators with optical communication networks, simultaneous sensing and optical communication are demonstrated by an optical signal transmission experimental system using especially filtering amplified spontaneous emission spectra. The refractive index (RI) sensing ring with a sensitivity of 172 nm/RIU, a figure of merit (FOM) of 1220, and a detection limit (DL) of 8.2*10-6 RIU is demonstrated. Simultaneously, the 1.25 Gbps optical on-off-keying (OOK) signal is transmitted at the concentration of different NaCl solutions, which indicates the bit-error-ratio (BER) decreases with the increase in concentration. The novel IOSAC technology shows the potential to realize high-performance simultaneous biosensing and communication in real time and further accelerate the development of IoT and 6G networks.Comment: 11pages, 5 figutre

    Effect of steam reinjection mass flow rate on the SOFC–GT system with steam reinjection

    Get PDF
    A solid oxide fuel cell (SOFC) is regarded as the first choice of high-efficiency and clean power generation technology in the 21st century due to its characteristics of high power generation efficiency and low pollutant emission. In this paper, hydrogen is used as a fuel for SOFCs using the EBSILON platform. A sensitivity analysis of the solid oxide fuel cell–gas turbine (SOFC–GT) system with steam reinjection is carried out to investigate the effect of the steam reinjection mass flow rate on the improvement of the electrical efficiency of the system and on the values of the other parameters. The results show that the variation in the steam reinjection mass flow rate has an effect on other parameters. Changes in several parameters affect the electrical efficiency of the system, which reaches 74.11% at a pressure ratio of 10, SOFC inlet temperature of 783.15 K, turbine back pressure of 70 kPa, and steam reinjection mass flow rate of 6.16 kg/s. Future research can optimize the overall parameter selection of the system in terms of economy and other aspects
    corecore