25,035 research outputs found
Nuclear dependence asymmetries in direct photon production
We study the nuclear dependences of high- jet cross sections in one
photon and one jet production in proton-nucleus collisions. We find that there
exist asymmetries between the outgoing jets and photons. A convincing reason
responsible for those asymmetries are demonstrated in perturbative QCD.
Significant nuclear enhancements are also found in the inclusive jet cross
sections.Comment: 9 pages, LaTeX, 5 ps-figure
Generalised theory on asymptotic stability and boundedness of stochastic functional differential equations
Asymptotic stability and boundedness have been two of most popular topics in the study of stochastic functional differential equations (SFDEs) (see e.g. Appleby and Reynolds (2008), Appleby and Rodkina (2009), Basin and Rodkina (2008), Khasminskii (1980), Mao (1995), Mao (1997), Mao (2007), Rodkina and Basin (2007), Shu, Lam, and Xu (2009), Yang, Gao, Lam, and Shi (2009), Yuan and Lygeros (2005) and Yuan and Lygeros (2006)). In general, the existing results on asymptotic stability and boundedness of SFDEs require (i) the coefficients of the SFDEs obey the local Lipschitz condition and the linear growth condition; (ii) the diffusion operator of the SFDEs acting on a C2,1-function be bounded by a polynomial with the same order as the C2,1-function. However, there are many SFDEs which do not obey the linear growth condition. Moreover, for such highly nonlinear SFDEs, the diffusion operator acting on a C2,1-function is generally bounded by a polynomial with a higher order than the C2,1-function. Hence the existing criteria on stability and boundedness for SFDEs are not applicable andwesee the necessity to develop new criteria. Our main aim in this paper is to establish new criteria where the linear growth condition is no longer needed while the up-bound for the diffusion operator may take a much more general form
Recommended from our members
TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae.
Avoidance of noxious ambient heat is crucial for survival. A well-known phenomenon is that animals are sensitive to the rate of temperature change. However, the cellular and molecular underpinnings through which animals sense and respond much more vigorously to fast temperature changes are unknown. Using Drosophila larvae, we found that nociceptive rolling behavior was triggered at lower temperatures and at higher frequencies when the temperature increased rapidly. We identified neurons in the brain that were sensitive to the speed of the temperature increase rather than just to the absolute temperature. These cellular and behavioral responses depended on the TRPA1 channel, whose activity responded to the rate of temperature increase. We propose that larvae use low-threshold sensors in the brain to monitor rapid temperature increases as a protective alert signal to trigger rolling behaviors, allowing fast escape before the temperature of the brain rises to dangerous levels
A Computational Model of the Short-Cut Rule for 2D Shape Decomposition
We propose a new 2D shape decomposition method based on the short-cut rule.
The short-cut rule originates from cognition research, and states that the
human visual system prefers to partition an object into parts using the
shortest possible cuts. We propose and implement a computational model for the
short-cut rule and apply it to the problem of shape decomposition. The model we
proposed generates a set of cut hypotheses passing through the points on the
silhouette which represent the negative minima of curvature. We then show that
most part-cut hypotheses can be eliminated by analysis of local properties of
each. Finally, the remaining hypotheses are evaluated in ascending length
order, which guarantees that of any pair of conflicting cuts only the shortest
will be accepted. We demonstrate that, compared with state-of-the-art shape
decomposition methods, the proposed approach achieves decomposition results
which better correspond to human intuition as revealed in psychological
experiments.Comment: 11 page
- …