7 research outputs found

    A reverse extended Hardy–Hilbert’s inequality with parameters

    No full text
    Abstract In this paper, by virtue of the symmetry principle, applying the techniques of real analysis and Euler–Maclaurin summation formula, we construct proper weight coefficients and use them to establish a reverse extended Hardy–Hilbert’s inequality with multi-parameters. Then, we obtain the equivalent forms and some equivalent statements of the best possible constant factor related to several parameters. Finally, we illustrate how the obtained results can generate some new reverse Hardy–Hilbert-type inequalities

    Morphological Analysis for Three-Dimensional Chaotic Delay Neural Networks

    No full text
    The study focuses on the chaotic behavior of a three-dimensional Hopfield neural network with time delay. We find the aspecific coefficient matrix and the initial value condition of the system and use MATLAB software to draw its graph. The result shows that their shape is very similar to the figure of Roslerʼs chaotic system. Furthermore, we analyzed the divergence, the eigenvalue of the Jacobian matrix for the equilibrium point, and the Lyapunov exponent of the system. These properties prove that the system does have chaotic behavior. This result not only confirms that there is chaos in the neural networks but also that the chaotic characteristics of the system are very similar to those of Roslerʼs chaotic system under certain conditions. This discovery provides useful information that can be applied to other aspects of chaotic Hopfield neural networks, such as chaotic synchronization and control

    A new reverse Mulholland’s inequality with one partial sum in the kernel

    No full text
    Abstract By means of the techniques of real analysis, applying some basic inequalities and formulas, a new reverse Mulholland’s inequality with one partial sum in the kernel is given. We obtain the equivalent conditions of the parameters related to the best value in the new inequality. As applications, we reduce to the equivalent forms and a few inequalities for particular parameters

    Some new results on the face index of certain polycyclic chemical networks

    Get PDF
    Silicate minerals make up the majority of the earth's crust and account for almost 92 percent of the total. Silicate sheets, often known as silicate networks, are characterised as definite connectivity parallel designs. A key idea in studying different generalised classes of graphs in terms of planarity is the face of the graph. It plays a significant role in the embedding of graphs as well. Face index is a recently created parameter that is based on the data from a graph's faces. The current draft is utilizing a newly established face index, to study different silicate networks. It consists of a generalized chain of silicate, silicate sheet, silicate network, carbon sheet, polyhedron generalized sheet, and also triangular honeycomb network. This study will help to understand the structural properties of chemical networks because the face index is more generalized than vertex degree based topological descriptors

    Tetrahedral sheets of clay minerals and their edge valency-based entropy measures

    Get PDF
    Humanity has always benefited from an intercapillary study in the quantification of natural occurrences in mathematics and other pure scientific fields. Graph theory was extremely helpful to other studies, particularly in the applied sciences. Specifically, in chemistry, graph theory made a significant contribution. For this, a transformation is required to create a graph representing a chemical network or structure, where the vertices of the graph represent the atoms in the chemical compound and the edges represent the bonds between the atoms. The quantity of edges that are incident to a vertex determines its valency (or degree) in a graph. The degree of uncertainty in a system is measured by the entropy of a probability. This idea is heavily grounded in statistical reasoning. It is primarily utilized for graphs that correspond to chemical structures. The development of some novel edge-weighted based entropies that correspond to valency-based topological indices is made possible by this research. Then these compositions are applied to clay mineral tetrahedral sheets. Since they have been in use for so long, corresponding indices are thought to be the most effective methods for quantifying chemical graphs. This article develops multiple edge degree-based entropies that correlate to the indices and determines how to modify them to assess the significance of each type

    Entropies of the Y-Junction Type Nanostructures

    No full text
    Recent research on nanostructures has demonstrated their importance and application in a variety of fields. Nanostructures are used directly or indirectly in drug delivery systems, medicine and pharmaceuticals, biological sensors, photodetectors, transistors, optical and electronic devices, and so on. The discovery of carbon nanotubes with Y-shaped junctions is motivated by the development of future advanced electronic devices. Because of their interactionwithY-junctions, electronic switches, amplifiers, and three-terminal transistors are of particular interest. Entropy is a concept that determines the uncertainty of a system or network. Entropy concepts are also used in biology, chemistry, and applied mathematics. Based on the requirements, entropy in the form of a graph can be classified into several types. In 1955, graph-based entropy was introduced. One of the types of entropy is edgeweighted entropy. We examined the abstract form of Y-shaped junctions in this study. Some edge-weight-based entropy formulas for the generic view of Y-shaped junctions were created, and some edge-weighted and topological index-based concepts for Y-shaped junctions were discussed in the present paper
    corecore